Resnet-18和Resnet34 pytorch实现

残差块:
Resnet-18和Resnet34 pytorch实现_第1张图片
Resnet-18和Resnet34 pytorch实现_第2张图片
18层:(2+2+2+2)*2+1+1

import torch.nn as nn
from torchinfo import summary
import torch


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        """

        :param inplanes: 输入通道数
        :param planes:  输出通道数
        :param stride: 步长
        :param downsample:  基础结构里有一个从x直接连到下面的线,
        如果上一个ResidualBlock的输出维度和当前的ResidualBlock的维度不一样,
        那就对这个x进行downSample操作,如果维度一样,直接加就行了,这时直接output=x+residual
        """

        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.conv2(x)
        x = self.bn2(x)

        if self.downsample is not None:
            residual = self.downsample(residual)

        out =x+ residual
        out = self.relu(out)

        return out
class ResNet_18(nn.Module):

    def __init__(self, block, layers, num_classes=1000):
        """

        :param block:  调用basicblock
        :param layers:  使用一个列表 储存想搭建的layer
        :param num_classes: fc的输出维度
        """

        self.inplanes = 64
        super(ResNet_18, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self.make_layer(block, 64, layers[0])
        self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self.make_layer(block, 512, layers[3], stride=2)

        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
    #构建layer
    def make_layer(self, block, planes, blocks, stride=1):
        """
        
        :param block: 调用basicblock
        :param planes: 输出通道大小
        :param blocks: 调用列表
        :param stride: 步长
        :return: nn.Sequential(*layers)
        """
        downsample = None
        # if stride != 1 or self.inplanes != planes * block.expansion:
        #     downsample = nn.Sequential(
        #         nn.Conv2d(self.inplanes, planes * block.expansion,
        #                   kernel_size=1, stride=stride, bias=False),
        #         nn.BatchNorm2d(planes * block.expansion),
        #     )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        output = self.fc(x)

        return output

resnet=ResNet_18(BasicBlock,[2,2,2,2])

summary(resnet)

结果:

=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
ResNet_18                                --
├─Conv2d: 1-1                            9,408
├─BatchNorm2d: 1-2                       128
├─ReLU: 1-3                              --
├─MaxPool2d: 1-4                         --
├─Sequential: 1-5                        --
│    └─BasicBlock: 2-1                   --
│    │    └─Conv2d: 3-1                  36,928
│    │    └─BatchNorm2d: 3-2             128
│    │    └─ReLU: 3-3                    --
│    │    └─Conv2d: 3-4                  36,928
│    │    └─BatchNorm2d: 3-5             128
│    └─BasicBlock: 2-2                   --
│    │    └─Conv2d: 3-6                  36,928
│    │    └─BatchNorm2d: 3-7             128
│    │    └─ReLU: 3-8                    --
│    │    └─Conv2d: 3-9                  36,928
│    │    └─BatchNorm2d: 3-10            128
├─Sequential: 1-6                        --
│    └─BasicBlock: 2-3                   --
│    │    └─Conv2d: 3-11                 73,856
│    │    └─BatchNorm2d: 3-12            256
│    │    └─ReLU: 3-13                   --
│    │    └─Conv2d: 3-14                 147,584
│    │    └─BatchNorm2d: 3-15            256
│    └─BasicBlock: 2-4                   --
│    │    └─Conv2d: 3-16                 147,584
│    │    └─BatchNorm2d: 3-17            256
│    │    └─ReLU: 3-18                   --
│    │    └─Conv2d: 3-19                 147,584
│    │    └─BatchNorm2d: 3-20            256
├─Sequential: 1-7                        --
│    └─BasicBlock: 2-5                   --
│    │    └─Conv2d: 3-21                 295,168
│    │    └─BatchNorm2d: 3-22            512
│    │    └─ReLU: 3-23                   --
│    │    └─Conv2d: 3-24                 590,080
│    │    └─BatchNorm2d: 3-25            512
│    └─BasicBlock: 2-6                   --
│    │    └─Conv2d: 3-26                 590,080
│    │    └─BatchNorm2d: 3-27            512
│    │    └─ReLU: 3-28                   --
│    │    └─Conv2d: 3-29                 590,080
│    │    └─BatchNorm2d: 3-30            512
├─Sequential: 1-8                        --
│    └─BasicBlock: 2-7                   --
│    │    └─Conv2d: 3-31                 1,180,160
│    │    └─BatchNorm2d: 3-32            1,024
│    │    └─ReLU: 3-33                   --
│    │    └─Conv2d: 3-34                 2,359,808
│    │    └─BatchNorm2d: 3-35            1,024
│    └─BasicBlock: 2-8                   --
│    │    └─Conv2d: 3-36                 2,359,808
│    │    └─BatchNorm2d: 3-37            1,024
│    │    └─ReLU: 3-38                   --
│    │    └─Conv2d: 3-39                 2,359,808
│    │    └─BatchNorm2d: 3-40            1,024
├─AvgPool2d: 1-9                         --
├─Linear: 1-10                           513,000
=================================================================
Total params: 11,519,528
Trainable params: 11,519,528
Non-trainable params: 0
=================================================================

Resnet-34

import torch.nn as nn
from torchinfo import summary
import torch


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        """

        :param inplanes: 输入通道数
        :param planes:  输出通道数
        :param stride: 步长
        :param downsample:  基础结构里有一个从x直接连到下面的线,
        如果上一个ResidualBlock的输出维度和当前的ResidualBlock的维度不一样,
        那就对这个x进行downSample操作,如果维度一样,直接加就行了,这时直接output=x+residual
        """

        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.conv2(x)
        x = self.bn2(x)

        if self.downsample is not None:
            residual = self.downsample(residual)

        out =x+ residual
        out = self.relu(out)

        return out
class ResNet_34(nn.Module):

    def __init__(self, block, layers, num_classes=1000):
        """

        :param block:  调用basicblock
        :param layers:  使用一个列表 储存想搭建的layer
        :param num_classes: fc的输出维度
        """

        self.inplanes = 64
        super(ResNet_34, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self.make_layer(block, 64, layers[0])
        self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self.make_layer(block, 512, layers[3], stride=2)

        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
    #构建layer
    def make_layer(self, block, planes, blocks, stride=1):
        """

        :param block: 调用basicblock
        :param planes: 输出通道大小
        :param blocks: 调用列表
        :param stride: 步长
        :return: nn.Sequential(*layers)
        """
        downsample = None
        # if stride != 1 or self.inplanes != planes * block.expansion:
        #     downsample = nn.Sequential(
        #         nn.Conv2d(self.inplanes, planes * block.expansion,
        #                   kernel_size=1, stride=stride, bias=False),
        #         nn.BatchNorm2d(planes * block.expansion),
        #     )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        output = self.fc(x)

        return output

resnet=ResNet_34(BasicBlock,[3,4,6,3])

summary(resnet)

结果:

=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
ResNet_18                                --
├─Conv2d: 1-1                            9,408
├─BatchNorm2d: 1-2                       128
├─ReLU: 1-3                              --
├─MaxPool2d: 1-4                         --
├─Sequential: 1-5                        --
│    └─BasicBlock: 2-1                   --
│    │    └─Conv2d: 3-1                  36,928
│    │    └─BatchNorm2d: 3-2             128
│    │    └─ReLU: 3-3                    --
│    │    └─Conv2d: 3-4                  36,928
│    │    └─BatchNorm2d: 3-5             128
│    └─BasicBlock: 2-2                   --
│    │    └─Conv2d: 3-6                  36,928
│    │    └─BatchNorm2d: 3-7             128
│    │    └─ReLU: 3-8                    --
│    │    └─Conv2d: 3-9                  36,928
│    │    └─BatchNorm2d: 3-10            128
│    └─BasicBlock: 2-3                   --
│    │    └─Conv2d: 3-11                 36,928
│    │    └─BatchNorm2d: 3-12            128
│    │    └─ReLU: 3-13                   --
│    │    └─Conv2d: 3-14                 36,928
│    │    └─BatchNorm2d: 3-15            128
├─Sequential: 1-6                        --
│    └─BasicBlock: 2-4                   --
│    │    └─Conv2d: 3-16                 73,856
│    │    └─BatchNorm2d: 3-17            256
│    │    └─ReLU: 3-18                   --
│    │    └─Conv2d: 3-19                 147,584
│    │    └─BatchNorm2d: 3-20            256
│    └─BasicBlock: 2-5                   --
│    │    └─Conv2d: 3-21                 147,584
│    │    └─BatchNorm2d: 3-22            256
│    │    └─ReLU: 3-23                   --
│    │    └─Conv2d: 3-24                 147,584
│    │    └─BatchNorm2d: 3-25            256
│    └─BasicBlock: 2-6                   --
│    │    └─Conv2d: 3-26                 147,584
│    │    └─BatchNorm2d: 3-27            256
│    │    └─ReLU: 3-28                   --
│    │    └─Conv2d: 3-29                 147,584
│    │    └─BatchNorm2d: 3-30            256
│    └─BasicBlock: 2-7                   --
│    │    └─Conv2d: 3-31                 147,584
│    │    └─BatchNorm2d: 3-32            256
│    │    └─ReLU: 3-33                   --
│    │    └─Conv2d: 3-34                 147,584
│    │    └─BatchNorm2d: 3-35            256
├─Sequential: 1-7                        --
│    └─BasicBlock: 2-8                   --
│    │    └─Conv2d: 3-36                 295,168
│    │    └─BatchNorm2d: 3-37            512
│    │    └─ReLU: 3-38                   --
│    │    └─Conv2d: 3-39                 590,080
│    │    └─BatchNorm2d: 3-40            512
│    └─BasicBlock: 2-9                   --
│    │    └─Conv2d: 3-41                 590,080
│    │    └─BatchNorm2d: 3-42            512
│    │    └─ReLU: 3-43                   --
│    │    └─Conv2d: 3-44                 590,080
│    │    └─BatchNorm2d: 3-45            512
│    └─BasicBlock: 2-10                  --
│    │    └─Conv2d: 3-46                 590,080
│    │    └─BatchNorm2d: 3-47            512
│    │    └─ReLU: 3-48                   --
│    │    └─Conv2d: 3-49                 590,080
│    │    └─BatchNorm2d: 3-50            512
│    └─BasicBlock: 2-11                  --
│    │    └─Conv2d: 3-51                 590,080
│    │    └─BatchNorm2d: 3-52            512
│    │    └─ReLU: 3-53                   --
│    │    └─Conv2d: 3-54                 590,080
│    │    └─BatchNorm2d: 3-55            512
│    └─BasicBlock: 2-12                  --
│    │    └─Conv2d: 3-56                 590,080
│    │    └─BatchNorm2d: 3-57            512
│    │    └─ReLU: 3-58                   --
│    │    └─Conv2d: 3-59                 590,080
│    │    └─BatchNorm2d: 3-60            512
│    └─BasicBlock: 2-13                  --
│    │    └─Conv2d: 3-61                 590,080
│    │    └─BatchNorm2d: 3-62            512
│    │    └─ReLU: 3-63                   --
│    │    └─Conv2d: 3-64                 590,080
│    │    └─BatchNorm2d: 3-65            512
├─Sequential: 1-8                        --
│    └─BasicBlock: 2-14                  --
│    │    └─Conv2d: 3-66                 1,180,160
│    │    └─BatchNorm2d: 3-67            1,024
│    │    └─ReLU: 3-68                   --
│    │    └─Conv2d: 3-69                 2,359,808
│    │    └─BatchNorm2d: 3-70            1,024
│    └─BasicBlock: 2-15                  --
│    │    └─Conv2d: 3-71                 2,359,808
│    │    └─BatchNorm2d: 3-72            1,024
│    │    └─ReLU: 3-73                   --
│    │    └─Conv2d: 3-74                 2,359,808
│    │    └─BatchNorm2d: 3-75            1,024
│    └─BasicBlock: 2-16                  --
│    │    └─Conv2d: 3-76                 2,359,808
│    │    └─BatchNorm2d: 3-77            1,024
│    │    └─ReLU: 3-78                   --
│    │    └─Conv2d: 3-79                 2,359,808
│    │    └─BatchNorm2d: 3-80            1,024
├─AvgPool2d: 1-9                         --
├─Linear: 1-10                           513,000
=================================================================
Total params: 21,631,400
Trainable params: 21,631,400
Non-trainable params: 0
=================================================================

你可能感兴趣的:(深度学习,python,cv,pytorch,深度学习)