- Pytorch:以CIFAR-10分类为例,给出了神经网络的训练流程
Xiao_Ya__
深度学习pytorchpytorch分类神经网络
下面给出了神经网络的训练流程,包括数据加载与预处理、网络定义、损失函数和优化器定义、网络训练和网络测试。importtorchastimporttorchvisionastvimporttorchvision.transformsastransformsfromtorchvision.transformsimportToPILImageimporttorch.nnasnnimporttorch.n
- [C++]使用纯opencv部署yolov12目标检测onnx模型
FL1623863129
深度学习c++opencvYOLO
yolov12官方框架:sunsmarterjie/yolov12【算法介绍】在C++中使用纯OpenCV部署YOLOv12进行目标检测是一项具有挑战性的任务,因为YOLOv12通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN
- 无人机实战系列(二)本地摄像头 + Depth-Anything V2
nenchoumi3119
无人机实战无人机
这篇文章介绍了如何在本地运行Depth-AnythingV2,因为我使用的无人机是Tello,其本身仅提供了一个单目视觉相机,在众多单目视觉转Depth的方案中我选择了Depth-AnythingV2,这个库的强大在于其基于深度学习模型将单目视觉以较低的代价转换成RGBD图像,可以用来无人机避障与SLAM。Step1.拉取Depth-AnythingV2源码与模型下载官方仓库提供了两种方式调用De
- 深度学习笔记——循环神经网络RNN
好评笔记
补档深度学习rnn人工智能机器学习计算机视觉神经网络AIGC
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的循环神经网络RNN知识点。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习文本特征提取的方法1.基础方法1.1词袋模型(BagofWords,BOW)工作原理举例优点缺点1.2TF-IDF(TermFrequency-InverseDocumentFr
- 终于明白了!人工智能、机器学习、深度学习、集成学习及大模型的定义与联系
大模型玩家
人工智能机器学习深度学习产品经理算法学习方法集成学习
在当今快速发展的科技领域,人工智能(ArtificialIntelligence,AI)、机器学习(MachineLearning,ML)、深度学习(DeepLearning,DL)、集成学习(EnsembleLearning)以及大模型(LargeModels)等概念频繁出现在人们的视野中。它们不仅推动了科技的进步,也深刻影响了社会生活的方方面面。本文将对这些概念进行全面解析,并探讨它们之间的联
- 机器学习笔记——特征工程
好评笔记
补档机器学习笔记人工智能AIGC深度学习计算机视觉面试八股
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自
- 【PyTorch 实战2:UNet 分割模型】10min揭秘 UNet 分割网络如何工作以及pytorch代码实现(详细代码实现)
xiaoh_7
pytorch网络图像处理计算机视觉
UNet网络详解及PyTorch实现一、UNet网络原理 U-Net,自2015年诞生以来,便以其卓越的性能在生物医学图像分割领域崭露头角。作为FCN的一种变体,U-Net凭借其Encoder-Decoder的精巧结构,不仅在医学图像分析中大放异彩,更在卫星图像分割、工业瑕疵检测等多个领域展现出强大的应用能力。UNet是一种常用于图像分割的卷积神经网络架构,其特点在于其U型结构,包括一个收缩路径
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- Python微调DeepSeek-R1-Distill-Qwen-1.5B模型:使用Transformers和PyTorch进行训练
煤炭里de黑猫
pytorchpython人工智能机器学习
前言近年来,基于Transformer架构的预训练语言模型如GPT、BERT等已经取得了显著的成果,广泛应用于自然语言处理(NLP)的各个领域。为了让这些模型更加适应特定任务,我们通常会进行微调(Fine-tuning)。本博客将详细介绍如何微调一个名为Qwen-1.5B的模型,使用HuggingFace的Transformers库与PyTorch框架来实现。我们将通过一步步的代码解析,帮助你理解
- 基于UNet对DRIVE视网膜进行图像分割
海洋 之心
深度学习pytorch人工智能python
前言大家好,我是阿光。本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。正在更新中~✨我的项目环境:平台:Windows10语言环境:python3.7编译器:PyCharmPyTorch版本:1.8.1项目专栏:【PyTorch深度学习项目实战100例】一、基于UNet对DRIVE视网膜进行图像
- 针对视频内容进行检测开源项目
红豆和绿豆
开源音视频
以下是10个可以实现视频是否涉及擦边或黄色内容检测的免费开源GitHub项目推荐:1.**OpenNSFW2**OpenNSFW2是一个用于检测图片和视频是否包含成人内容的开源库。它基于深度学习模型,能够实时分析视频帧并给出概率值,判断内容是否涉及黄色。2.**Watsor**Watsor是一个开源项目,支持实时视频流的物体检测。它允许通过配置检测区域和掩码,限制检测范围,并支持多种视频源输入。3
- 探秘 DeepSeek 硬件适配:GPU/TPU/NPU 异构计算原理剖析
FinkGO小码
深度学习程序人生算法语言模型数据分析学习方法经验分享
一、引言在深度学习领域蓬勃发展的浪潮中,硬件作为支撑技术腾飞的基石,其适配与协同能力成为决定深度学习应用效能的关键因素。DeepSeek作为前沿且极具创新性的技术框架,在与GPU、TPU、NPU等异构硬件的融合适配方面展现出卓越特性。依托清华大学《DeepSeek:从入门到精通》这一宝贵知识载体,我们得以深入挖掘其底层适配逻辑,全方位展现DeepSeek在异构计算舞台上的精彩表现。二、GPU:深度
- 目标检测进化史:从R-CNN到YOLOv11,技术的狂飙之路
紫雾凌寒
AI炼金厂#机器学习算法#深度学习深度学习计算机视觉python目标检测YOLOcnn人工智能
一、引言在计算机视觉领域中,目标检测是一项至关重要的任务,它旨在识别图像或视频中感兴趣的目标物体,并确定它们的位置。目标检测技术的应用广泛,涵盖了自动驾驶、安防监控、智能机器人、图像编辑等多个领域。随着深度学习技术的飞速发展,目标检测算法也取得了巨大的突破,从最初的R-CNN到如今的YOLOv11,每一次的技术演进都为该领域带来了新的活力和可能性。回顾目标检测的发展历程,R-CNN作为第一个将深度
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- Pytorch实现之混合成员GAN训练自己的数据集
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch生成对抗网络人工智能python深度学习机器学习计算机视觉
简介简介:提出一种新的MMGAN架构,使用常见生成器分布的混合对每个数据分布进行建模。由于生成器在多个真实数据分布之间共享,高度共享的生成器(通过混合权重反映)捕获分布的公共方面,而非共享的生成器捕获独特方面。论文题目:MIXEDMEMBERSHIPGENERATIVEADVERSARIALNETWORKS(混合成员生成对抗网络)会议:IEEEInternationalConferenceonIm
- 9、论文阅读:无监督的感知驱动深水下图像增强
Maker~
图像增强论文阅读深度学习计算机视觉
Perception-DrivenDeepUnderwaterImageEnhancementWithoutPairedSupervision前言引言相关工作UIE模型基于非物理模型基于物理模型基于深度学习质量度量在图像增强中的应用方法论问题表述PQR模型PDD网络生成器损失函数实验A.数据集B.训练细节C.实验结果**PQR模型结果****定量UIE结果****定量UIE结果****可视化增强结
- Pytorch实现论文:基于多尺度融合生成对抗网络的水下图像增强
这张生成的图像能检测吗
GAN系列pytorch生成对抗网络人工智能深度学习神经网络计算机视觉python
简介简介:提出了一种新型的水下图像增强算法,基于多尺度融合生成对抗网络,名为UMSGAN,以解决低对比度和颜色失真的问题。首先经过亮度的处理,将处理后的图像输入设计的MFFEM模块和RM模块生成图像。该算法旨在适应各种水下场景,提供颜色校正和细节增强。论文题目:Underwaterimageenhancementbasedonmultiscalefusiongenerativeadversaria
- Did you forget to `#include <pybind11/stl.h>`? Or <pybind11/complex.h>,<pybind11/functional.h>
沉迷单车的追风少年
深度学习-计算机视觉深度学习pythonpytorch
项目场景:基于深度学习的三维点云可视化问题描述:Traceback(mostrecentcalllast):File".\draw_npy.py",line25,ino3d.visualization.draw_geometries([pcd.points])TypeError:draw_geometries():incompatiblefunctionarguments.Thefollowing
- 即插即用的注意力机制21种
@Mr_LiuYang
论文阅读AttentionModule注意力机制即插即用
提示:谬误之处请指出更正摘要随着深度学习特别是自然语言处理领域的飞速发展,注意力机制(AttentionMechanism)已成为提升模型表现的关键技术,本文主要记录了即插即用的注意力机制结构的功能、出处及核心代码。1、SEBlock(Squeeze-and-Excitation)功能:自适应学习通道权重,增强重要通道特征。出处:SENet#SEBlock(PyTorch)classSEBlock
- 【PyTorch】torch.nn.Conv1d 类:一维卷积层(处理一维数据的卷积运算)
彬彬侠
PyTorch基础Conv1d一维卷积层神经网络深度学习pytorchpython
torch.nn.Conv1d是PyTorch中的一维卷积层,用于处理一维数据的卷积运算,常用于时序数据、音频信号、文本等的处理。与二维卷积(Conv2d)和三维卷积(Conv3d)类似,Conv1d通过在输入数据的一个维度(通常是时间或空间)上滑动卷积核来提取特征。定义与参数torch.nn.Conv1d的定义如下:torch.nn.Conv1d(in_channels,out_channels
- PyTorch中文文档:API查询与使用的终极指南
仲照武Blanche
PyTorch中文文档:API查询与使用的终极指南【下载地址】PyTorch中文文档-API查询与使用PyTorch中文文档-API查询与使用欢迎来到PyTorch中文文档资源页面!本资源为您提供了一份详尽的《pytorch中文文档-API查询与使用.pdf》,这是每一个PyTorch开发者不可或缺的学习和参考资料项目地址:https://gitcode.com/Open-source-docum
- PyTorch知识点总结之一
Rain松
机器学习与深度学习pytorch深度学习python
PyTorch知识点总结之一1.什么是PyTorch?它有什么特点和优势?PyTorch是一个基于Python的科学计算库,它是用于机器学习和深度学习的框架之一。它由Facebook的人工智能研究团队开发和维护,是一个开源的软件包,可以帮助开发者构建各种深度学习模型。PyTorch的特点和优势如下:易于使用和学习:PyTorch采用了类似于Python的语法,使得它容易上手和学习。它还提供了丰富的
- pytorch模型(.pt、.pth)转onnx模型(.onnx)的方法详解
墨小傲
pytorch人工智能python
.pt和.pth只能在pytorch的框架中使用,但是有时我们需要在其他的框架使用模型或者使用模型可视化工具来展示模型(大部分对.pt格式不兼容),这时就需要用到.onnx模型形式来转换了。1、首先你要安装依赖库:onnx和onnxruntimepipinstallonnxpipinstallonnxruntime进行安装2、pytorch模型转换到onnx模型pytorch转onnx仅仅需要一个
- 51、深度学习-自学之路-自己搭建深度学习框架-12、使用我们自己建的架构重写RNN预测网络
小宇爱
深度学习-自学之路深度学习rnn人工智能
importnumpyasnpclassTensor(object):def__init__(self,data,autograd=False,creators=None,creation_op=None,id=None):self.data=np.array(data)self.autograd=autogradself.grad=Noneif(idisNone):self.id=np.rand
- 初学者推荐学习AI的路径
ProgramHan
学习人工智能
学习人工智能的路径可以分为基础知识、编程技能、机器学习、深度学习、数据处理与可视化、自然语言处理(NLP)、计算机视觉(CV)、强化学习、实践项目和持续学习几个阶段。以下是一个简要的路径:1️⃣基础知识数学基础(线性代数、微积分、概率统计)编程基础(Python/R等语言)算法与数据结构2️⃣机器学习基础理解监督学习(如回归、分类)、无监督学习(如聚类、PCA)掌握机器学习库(如scikit-le
- PyTorch实战:手把手教你完成MNIST手写数字识别任务
吴师兄大模型
PyTorchpytorch人工智能python手写数字数别MNIST深度学习开发语言
系列文章目录Pytorch基础篇01-PyTorch新手必看:张量是什么?5分钟教你快速创建张量!02-张量运算真简单!PyTorch数值计算操作完全指南03-Numpy还是PyTorch?张量与Numpy的神奇转换技巧04-揭秘数据处理神器:PyTorch张量拼接与拆分实用技巧05-深度学习从索引开始:PyTorch张量索引与切片最全解析06-张量形状任意改!PyTorchreshape、tra
- PyTorch实现DARTS:可微分架构搜索指南
余伊日Estra
PyTorch实现DARTS:可微分架构搜索指南pt.darts项目地址:https://gitcode.com/gh_mirrors/pt/pt.darts项目介绍PyTorchImplementationofDARTS(简称pt.darts)是一个基于PyTorch框架的DARTS算法实现库。DARTS(DifferentiableArchitectureSearch)是一种创新的神经网络架构
- RTX 3090图形处理巅峰性能解析
智能计算研究中心
其他
内容概要作为NVIDIA面向专业创作者与发烧级玩家的旗舰产品,RTX3090重新定义了图形处理的性能边界。本文将以Ampere架构的技术演进为切入点,系统性解构该显卡在显存配置、运算单元协作及图像处理技术方面的创新设计。通过对比测试数据与工程原理分析,重点探讨24GBGDDR6X显存在8K分辨率场景下的带宽利用率,以及10496个CUDA核心在光线追踪与深度学习超采样(DLSS)任务中的动态负载分
- Ascend Extension for PyTorch是个what?
机器学习人工智能深度学习
1AscendExtensionforPyTorchAscendExtensionforPyTorch插件是基于昇腾的深度学习适配框架,使昇腾NPU可以支持PyTorch框架,为PyTorch框架的使用者提供昇腾AI处理器的超强算力。项目源码地址请参见Ascend/Pytorch。昇腾为基于昇腾处理器和软件的行业应用及服务提供全栈AI计算基础设施。您可以通过访问昇腾社区,了解关于昇腾的更多信息。2
- 神经网络与深度学习入门:理解ANN、CNN和RNN
shandianfk_com
ChatGPTAI神经网络深度学习cnn
在现代科技日新月异的今天,人工智能已经成为了我们生活中的重要组成部分。无论是智能手机的语音助手,还是推荐系统,背后都有一项核心技术在支撑,那就是神经网络与深度学习。今天,我们就来聊一聊这个听起来高大上的话题,其实它也没那么难懂!什么是神经网络?首先,我们要了解什么是神经网络。神经网络(ArtificialNeuralNetwork,简称ANN)是模拟人脑神经元连接方式的一种算法。它由一层层的“神经
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,