(转)Awsome Domain-Adaptation

Awsome Domain-Adaptation

2018-08-06 19:27:54

 

This blog is copied from: https://github.com/zhaoxin94/awsome-domain-adaptation 

 

This repo is a collection of AWESOME things about domian adaptation,including papers,code etc.Feel free to star and fork.

Contents

  • Papers
    • Overview
    • Theory
    • Unsupervised DA
      • Adversarial Methods
      • Network Methods
      • Optimal Transport
      • Incremental Methods
      • Other Methods
    • Zero-shot DA
    • Few-shot DA
    • Image-to-Image Translation
    • Open Set DA
    • Partial DA
    • Multi-source DA
    • General Transfer Learning
    • Applications
      • Object Detection
      • Semantic Segmentation
      • Person Re-Identification
      • Others
    • Benchmarks

Papers

Overview

  • Deep Visual Domain Adaptation: A Survey [arXiv 2018]
  • Domain Adaptation for Visual Applications: A Comprehensive Survey [arXiv 2017]

Theory

  • Analysis of Representations for Domain Adaptation [NIPS2006]
  • A theory of learning from different domains [ML2010]
  • Learning Bounds for Domain Adaptation [NIPS2007]

Unsupervised DA

Adversarial Methods

  • M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning [arXiv 6 Jul 2018] [Pytorch(official)]
  • Augmented Cyclic Adversarial Learning for Domain Adaptation [arXiv 1 Jul 2018]
  • Factorized Adversarial Networks for Unsupervised Domain Adaptation [arXiv 4 Jun 2018]
  • DiDA: Disentangled Synthesis for Domain Adaptation [arXiv 21 May 2018]
  • Unsupervised Domain Adaptation with Adversarial Residual Transform Networks [arXiv 25 Apr 2018]
  • Simple Domain Adaptation with Class Prediction Uncertainty Alignment [arXiv 12 Apr 2018]
  • Causal Generative Domain Adaptation Networks [arXiv 28 Jun 2018]
  • Conditional Adversarial Domain Adaptation [arXiv 10 Feb 2018 ]
  • Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation Maximization [ECCV2018]
  • Learning Semantic Representations for Unsupervised Domain Adaptation [ICML2018] [TensorFlow(Official)]
  • CyCADA: Cycle-Consistent Adversarial Domain Adaptation [ICML2018] [Pytorch(official)]
  • From source to target and back: Symmetric Bi-Directional Adaptive GAN [CVPR2018] [Keras(Official)] [Pytorch]
  • Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation [CVPR2018]
  • Maximum Classifier Discrepancy for Unsupervised Domain Adaptation [CVPR2018] [Pytorch(Official)]
  • Domain Generalization with Adversarial Feature Learning [CVPR2018]
  • Adversarial Feature Augmentation for Unsupervised Domain Adaptation [CVPR2018] [TensorFlow(Official)]
  • Duplex Generative Adversarial Network for Unsupervised Domain Adaptation [CVPR2018] [Pytorch(Official)]
  • Generate To Adapt: Aligning Domains using Generative Adversarial Networks [CVPR2018] [Pytorch(Official)]
  • Image to Image Translation for Domain Adaptation [CVPR2018]
  • Unsupervised Domain Adaptation with Similarity Learning [CVPR2018]
  • Conditional Generative Adversarial Network for Structured Domain Adaptation [CVPR2018]
  • Collaborative and Adversarial Network for Unsupervised Domain Adaptation [CVPR2018] [Pytorch]
  • Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation [CVPR2018]
  • Multi-Adversarial Domain Adaptation [AAAI2018] [Caffe(Official)]
  • Wasserstein Distance Guided Representation Learning for Domain Adaptation [AAAI2018] [TensorFlow(official)]
  • Incremental Adversarial Domain Adaptation for Continually Changing Environments [ICRA2018]
  • A DIRT-T Approach to Unsupervised Domain Adaptation [ICLR2018 Poster] [Tensorflow(Official)]
  • Label Efficient Learning of Transferable Representations acrosss Domains and Tasks [NIPS2017] [Project]
  • Addressing Appearance Change in Outdoor Robotics with Adversarial Domain Adaptation [IROS2017]
  • Adversarial Discriminative Domain Adaptation [CVPR2017] [Tensorflow(Official)] [Pytorch]
  • Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks [CVPR2017] [Tensorflow(Official)][Pytorch]
  • Domain Separation Networks [NIPS2016]
  • Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation [ECCV2016]
  • Domain-Adversarial Training of Neural Networks [JMLR2016]
  • Unsupervised Domain Adaptation by Backpropagation [ICML2015] [Caffe(Official)] [Tensorflow] [Pytorch]

Network Methods

  • Boosting Domain Adaptation by Discovering Latent Domains [CVPR2018]
  • Residual Parameter Transfer for Deep Domain Adaptation [CVPR2018]
  • Deep Asymmetric Transfer Network for Unbalanced Domain Adaptation [AAAI2018]
  • Deep CORAL: Correlation Alignment for Deep Domain Adaptation [ECCV2016]
  • Deep Domain Confusion: Maximizing for Domain Invariance [Arxiv 2014]

Optimal Transport

  • DeepJDOT: Deep Joint distribution optimal transport for unsupervised domain adaptation [ECCV2018]
  • Joint Distribution Optimal Transportation for Domain Adaptation [NIPS2017] [python] [Python Optimal Transport Library]

Incremental Methods

  • Incremental Adversarial Domain Adaptation for Continually Changing Environments [ICRA2018]
  • Continuous Manifold based Adaptation for Evolving Visual Domains [CVPR2014]

Other Methods

  • Unsupervised Domain Adaptation with Distribution Matching Machines [AAAI2018]
  • Self-Ensembling for Visual Domain Adaptation [ICLR2018 Poster]
  • Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation [ICLR2018 Poster]
  • Aligning Infinite-Dimensional Covariance Matrices in Reproducing Kernel Hilbert Spaces for Domain Adaptation [CVPR2018]
  • Associative Domain Adaptation [ICCV2017] [TensorFlow]
  • Learning Transferrable Representations for Unsupervised Domain Adaptation [NIPS2016]

Zero-shot DA

  • Zero-Shot Deep Domain Adaptation [ECCV2018]

Few-shot DA

Image-to-Image Translation

  • JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets [ICML2018] [TensorFlow(Official)]
  • Multimodal Unsupervised Image-to-Image Translation [arXiv] [Pytorch(Official)]
  • StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [CVPR2018][Pytorch(Official)]
  • Conditional Image-to-Image Translation [CVPR2018]
  • Toward Multimodal Image-to-Image Translation [NIPS2017] [Project] [Pyotorch(Official)]
  • Unsupervised Image-to-Image Translation Networks [NIPS2017] [Pytorch(Official)]
  • Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks [ICCV2017(extended version)][Pytorch(Official)]
  • Image-to-Image Translation with Conditional Adversarial Nets [CVPR2017] [Project] [Pytorch(Official)]
  • Learning to Discover Cross-Domain Relations with Generative Adversarial Networks [ICML2017] [Pytorch(Official)]
  • Unsupervised Cross-Domain Image Generation [ICLR2017 Poster] [TensorFlow]
  • Coupled Generative Adversarial Networks [NIPS2016] [Poytorch(Official)]

Open Set DA

  • Learning Factorized Representations for Open-set Domain Adaptation [arXiv 31 May 2018]
  • Open Set Domain Adaptation by Backpropagation [ECCV2018]
  • Open Set Domain Adaptation [ICCV2017]

Partial DA

  • Partial Adversarial Domain Adaptation [ECCV2018(not released)] [Pytorch(Official)]
  • Importance Weighted Adversarial Nets for Partial Domain Adaptation [CVPR2018]
  • Partial Transfer Learning with Selective Adversarial Networks [CVPR2018][paper weekly] [Pytorch(Official) & Caffe(official)]

Multi source DA

  • Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift [CVPR2018]

Applications

Object Detection

  • Cross-Domain Weakly-Supervised Object Detection Through Progressive Domain Adaptation [CVPR2018]
  • Domain Adaptive Faster R-CNN for Object Detection in the Wild [CVPR2018]

Semantic Segmentation

  • Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation [CVPR2018]
  • Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes [ICCV2017]

Person Re-identification

  • Person Transfer GAN to Bridge Domain Gap for Person Re-Identification [CVPR2018]
  • Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification [CVPR2018]

Others

  • Real-Time Monocular Depth Estimation using Synthetic Data with Domain Adaptation via Image Style Transfer [CVPR2018]

Benchmarks

  • Syn2Real: A New Benchmark forSynthetic-to-Real Visual Domain Adaptation [arXiv 26 Jun] [Project]

 

转载于:https://www.cnblogs.com/wangxiaocvpr/p/9432120.html

你可能感兴趣的:(python,人工智能)