首先展示一个完整的pytorch代码:
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt
### Working with data ###
### step 1: get datasets.
### step 2: get dataloaders. Pass the 'Dataset' as an argument to 'DataLoader'. This supports automatic batching, sampling, shuffling and multiprocess data loading.
# Download training data from open datasets.
training_data = datasets.FashionMNIST(root="data", train=True, download=True, transform=ToTensor())
test_data = datasets.FashionMNIST(root="data", train=False, download=True, transform=ToTensor())
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
### Creating Models ###
### step 1: create a class that inherits from nn.Module
### step 2: define the layers in '__init__' function
### step 3: define specify the data flow in 'forward' function
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
### Optimizing the Model Parameters ###
### step 1: define loss function
### step 2: define optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
### Traing the Model ###
### step 1: define training process
### -- sub step 1: get data size, and for each data do the following:
### -- sub step 2: go through the model and compute prediction error
### -- sub step 3: do backpropagation
### step 2: define testing process
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad() # 重置所有模型参数为0以防止重复计算
loss.backward() # 反向传播
optimizer.step() # 利用反向传播中得到的梯度更新参数一步
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
### Saving the Model ###
### A common way to save a model is to serialize the internal state dictionary (containing the model parameters).
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
### Loading the Model ###
### step 1: re-create the model structure
### step 2: load the state dictionary into the odel
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))
# This model can now be used to make predictions.
classes = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')