早些时候微信二维码开源在opencv, 找码快解码强,最近我研究DataMartix解码库libdmtx的时候,发现它解码还行,找码有点慢,心想何不让深度学习助它一臂之力?于有了这个;
internal class SSDDetector
{
private static float CLIP(float x, float x1, float x2) => Math.Max(x1, Math.Min(x, x2));
public SSDDetector(string proto_path, string model_path)
{
net_ = CvDnn.ReadNetFromCaffe(proto_path, model_path);
}
private Net net_;
unsafe public List Forward(Mat img, int target_width, int target_height)
{
int img_w = img.Cols;
int img_h = img.Rows;
using Mat input = new();
Cv2.Resize(img, input, new Size(target_width, target_height), 0, 0, InterpolationFlags.Cubic);
using var blob = CvDnn.BlobFromImage(input, 1.0 / 255, new Size(input.Cols, input.Rows), new Scalar(0f, 0f, 0f),
false, false);
net_.SetInput(blob, "data");
using var prob = net_.Forward("detection_output");
List point_list = new();
// the shape is (1,1,100,7)=>(batch,channel,count,dim)
for (int row = 0; row < prob.Size(2); row++)
{
float* prob_score = (float*)prob.Ptr(0, 0, row).ToPointer();
// prob_score[0] is not used.
// prob_score[1]==1 stands for qrcode
if (prob_score[1] == 1 && prob_score[2] > 1E-5)
{
// add a safe score threshold due to https://github.com/opencv/opencv_contrib/issues/2877
// prob_score[2] is the probability of the qrcode, which is not used.
var point = new Mat(4, 2, MatType.CV_32FC1);
float x0 = CLIP(prob_score[3] * img_w, 0.0f, img_w - 1.0f);
float y0 = CLIP(prob_score[4] * img_h, 0.0f, img_h - 1.0f);
float x1 = CLIP(prob_score[5] * img_w, 0.0f, img_w - 1.0f);
float y1 = CLIP(prob_score[6] * img_h, 0.0f, img_h - 1.0f);
point.At(0, 0) = x0;
point.At(0, 1) = y0;
point.At(1, 0) = x1;
point.At(1, 1) = y0;
point.At(2, 0) = x1;
point.At(2, 1) = y1;
point.At(3, 0) = x0;
point.At(3, 1) = y1;
point_list.Add(point);
}
}
net_.Dispose();
return point_list;
}
}
private static void Main(string[] args)
{
Mat src = Cv2.ImRead("dm.bmp");
int img_w = src.Cols;
int img_h = src.Rows;
// hard code input size
int minInputSize = 1600;
float resizeRatio = (float)Math.Sqrt(img_w * img_h * 1.0 / (minInputSize * minInputSize));
int detect_width = (int)(img_w / resizeRatio);
int detect_height = (int)(img_h / resizeRatio);
var key = Cv2.WaitKey(1);
int fconut = 0;
Cv2.NamedWindow("img", WindowFlags.FreeRatio);
int windowH = 1200 * img_h / img_w;
Cv2.ResizeWindow("img", new(1200, windowH));
Cv2.MoveWindow("img", 200, 20);
while (key != 113) // q 退出
{
fconut++;
Scalar scalar = Scalar.RandomColor();int thickness = 2;
using Mat img = src.Clone();
using Mat gray = src.CvtColor(ColorConversionCodes.BGR2GRAY);
SSDDetector SSDD = new("detect.prototxt", "detect.caffemodel");
var pointslist = SSDD.Forward(gray, detect_width, detect_height);
foreach (var points in pointslist)
{
img.Line((int)points.At(0, 0), (int)points.At(0, 1),
(int)points.At(1, 0), (int)points.At(1, 1),
scalar, thickness);
img.Line((int)points.At(1, 0), (int)points.At(1, 1),
(int)points.At(2, 0), (int)points.At(2, 1),
scalar, thickness);
img.Line((int)points.At(2, 0), (int)points.At(2, 1),
(int)points.At(3, 0), (int)points.At(3, 1),
scalar, thickness);
img.Line((int)points.At(3, 0), (int)points.At(3, 1),
(int)points.At(0, 0), (int)points.At(0, 1),
scalar, thickness);
}
img.PutText(fconut.ToString(), new(20, 20), HersheyFonts.HersheyDuplex, 1, Scalar.Red);
img.PutText("q : quit", new(20, 60), HersheyFonts.HersheyDuplex, 1, Scalar.Red);
Cv2.ImShow("img", img);
key = Cv2.WaitKey();
}
}
原连接:
https://github.com/opencv/opencv_contrib/blob/master/modules/wechat_qrcode/src/detector/ssd_detector.cpp
欢迎加入 opencvsharp 技术交流群: 827888895 进群暗号:shimat