实现一个简单的决策树,可以同时处理属性值是连续和离散的情况。
使用sklearn里面的鸢尾花等数据集验证,正确率还不错(90%+)
Github地址:https://github.com/nhjydywd/DecisionTree
import DecisionTree
node = DecisionTree.trainDecisionTree(labels, attrs)
result = node.predict(attr)
以下为决策树的代码(DecisionTree.py):
import numpy as np
def trainDecisionTree(np_label, np_attrs):
print("Data shape: " + str(np.shape(np_attrs)))
# To decide whether an attribute is discrete
b_discrete = []
TH_DISCRETE = 10
for i in range(0,np.shape(np_attrs)[1]):
s = set()
b_discrete.append(True)
col = np_attrs[:,i]
for x in col:
s.add(x)
if(len(s) > TH_DISCRETE):
b_discrete[-1] = False
node = TreeNode()
processTreeNode(node, np_label, np_attrs, b_discrete)
return node
def compareEqual(left, right):
return left == right
# def compareNotEqual(left, right):
# return left != right
def compareLessOrEqual(left, right):
return left <= right
# def compareBiggerOrEqual(left, right):
# return left >= right
class TreeNode:
def __init__(self):
self.label = None
self.lChild = None
self.rChild = None
self.compareIndexAttr = None
self.compareValue = None
self.compareMethod = None
def accept(self, attrs):
attr = attrs[self.compareIndexAttr]
if self.compareMethod(attr, self.compareValue):
return True
return False
def predict(self, attrs):
if(self.label != None):
return self.label
if self.lChild.accept(attrs):
return self.lChild.predict(attrs)
else:
return self.rChild.predict(attrs)
# Impossible!
print("TreeNode Error: no child accept!")
print("arrts is: " + attrs)
exit(-1)
def devide(np_label, np_attrs, compareIndexAttr, compareMethod, compareValue):
left_label = []
left_attrs = []
right_label = []
right_attrs = []
for i in range(0,np.shape(np_attrs)[0]):
value = np_attrs[i][compareIndexAttr]
label = np_label[i]
attr = np_attrs[i]
if(compareMethod(value, compareValue)):
left_label.append(label)
left_attrs.append(attr)
else:
right_label.append(label)
right_attrs.append(attr)
left_np_label = np.array(left_label)
left_np_attrs = np.array(left_attrs)
right_np_label = np.array(right_label)
right_np_attrs = np.array(right_attrs)
return left_np_label, left_np_attrs, right_np_label, right_np_attrs
def countDistinctValues(np_values):
s = dict()
for v in np_values:
if v in s:
s[v] += 1
else:
s[v] = 1
return s
def findDevidePoint(np_label, np_attrs, indexAttr, bDiscrete):
if bDiscrete:
compareMethod = compareEqual
candidateValue = countDistinctValues(np_attrs[:,indexAttr])
else:
compareMethod = compareLessOrEqual
sorted_a = (np_attrs[np_attrs[:,indexAttr].argsort()])[:,indexAttr]
candidateValue = []
for i in range(0, len(sorted_a) - 1):
v = (sorted_a[i] + sorted_a[i+1]) / 2
candidateValue.append(v)
minGiniIndex = 1
for v in candidateValue:
l_label, l_attr, r_label, r_attr = devide(np_label, np_attrs, indexAttr, compareMethod, v)
ls_label = [l_label, r_label]
theGiniIndex = giniIndex(ls_label)
if theGiniIndex < minGiniIndex:
minGiniIndex = theGiniIndex
compareValue = v
return compareMethod, compareValue, minGiniIndex
def processTreeNode(node, np_label, np_attrs, b_discrete):
if len(np_label) != len(np_attrs):
print("Error: label size != attr size")
exit(-1)
if len(np_label) <= 0:
print("Error: label size <= 0!")
exit(-1)
if np.shape(np_attrs)[1] != len(b_discrete):
print("Error: numbers of attrs != length of b_discrete!")
exit(-1)
if isArrayElementIdentity(np_label):
node.label = np_label[0]
return
NUM_END = 5;
if len(np_label) <= NUM_END:
node.label = getMostElement(np_label)
return
if len(np_label) > 1000:
print("Current recursion data size: " + str(len(np_label)))
# Find the best attribute to divide.
minGiniIndex = 1
# ls_thread = []
for i in range(0, np.shape(np_attrs)[1]):
compareMethod, compareValue, giniIndex = findDevidePoint(np_label, np_attrs, i, b_discrete[i])
if giniIndex < minGiniIndex:
minGiniIndex = giniIndex
chooseAttrIndex = i
chooseCompareMethod = compareMethod
chooseCompareValue = compareValue
# Divide the dataset
l_label, l_attrs, r_label, r_attrs = devide(np_label,
np_attrs,
chooseAttrIndex,
chooseCompareMethod,
chooseCompareValue)
# Generate subtrees
node.lChild = TreeNode()
node.lChild.compareIndexAttr = chooseAttrIndex
node.lChild.compareMethod = chooseCompareMethod
node.lChild.compareValue = chooseCompareValue
if np.shape(l_label)[0] == 0:
node.lChild.label = getMostElement(np_label)
else:
processTreeNode(node.lChild, l_label, l_attrs, b_discrete)
node.rChild = TreeNode()
if np.shape(r_label)[0] == 0:
node.rChild.label = getMostElement(np_label)
else:
processTreeNode(node.rChild, r_label, r_attrs, b_discrete)
def isArrayElementIdentity(np_array):
e = np_array[0]
for x in np_array:
if x != e:
return False
return True
def getMostElement(np_array):
dictCount = {}
for x in np_array:
if x in dictCount.keys():
dictCount[x] += 1
else:
dictCount[x] = 1
max = -1
result = None
for key in dictCount:
if dictCount[key] > max:
result = key
max = dictCount[key]
return result
def gini(ls_p):
result = 1
for p in ls_p:
result -= p*p
return result
def giniIndex(ls_devide_np_label):
countTotal = 0
for np_label in ls_devide_np_label:
countTotal += np.shape(np_label)[0]
result = 0
for np_label in ls_devide_np_label:
countValues = countDistinctValues(np_label)
ls_p = []
for v in countValues:
p = countValues[v] / np.shape(np_label)[0]
ls_p.append(p)
result += gini(ls_p) * np.shape(np_label)[0] / countTotal
return result