PyTorch笔记:Python中的state_dict是啥

来自: https://pytorch.org/tutorials/recipes/recipes/what_is_state_dict.html

在PyTorch中,可学习的参数都被保存在模型的parameters中,可以通过model.parameters()访问到。而state_dict则是一个python字典对象,它映射了模型的每个层到参数张量。

Note that only layers with learnable parameters (convolutional layers, linear layers, etc.) and registered buffers (batchnorm’s running_mean) have entries in the model’s state_dict. Optimizer objects (torch.optim) also have a state_dict, which contains information about the optimizer’s state, as well as the hyperparameters used

官方示例:

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
print(net)
# ==== 输出 ====
Net(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
# Print model's state_dict
print("Model's state_dict:")
for param_tensor in net.state_dict():
    print(param_tensor, "\t", net.state_dict()[param_tensor].size())

print()

# Print optimizer's state_dict
print("Optimizer's state_dict:")
for var_name in optimizer.state_dict():
    print(var_name, "\t", optimizer.state_dict()[var_name])

输出:

Model's state_dict:
conv1.weight 	 torch.Size([6, 3, 5, 5])
conv1.bias 	 torch.Size([6])
conv2.weight 	 torch.Size([16, 6, 5, 5])
conv2.bias 	 torch.Size([16])
fc1.weight 	 torch.Size([120, 400])
fc1.bias 	 torch.Size([120])
fc2.weight 	 torch.Size([84, 120])
fc2.bias 	 torch.Size([84])
fc3.weight 	 torch.Size([10, 84])
fc3.bias 	 torch.Size([10])

Optimizer's state_dict:
state 	 {}
param_groups 	 [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}]

你可能感兴趣的:(PyTorch笔记:Python中的state_dict是啥)