tensorrt dockerfile

cuda10

    # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

ARG CUDA_VERSION=10.0
ARG CUDNN_VERSION=7
ARG OS_VERSION=18.04

FROM nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${OS_VERSION}
LABEL maintainer="HinGwen Woong"

# ENV TRT_VERSION 7.2.3.4
ENV TRT_VERSION 7.0.0.11
SHELL ["/bin/bash", "-c"]


# 将 apt 的升级源切换成 阿里云
RUN  sed -i s@/archive.ubuntu.com/@/mirrors.aliyun.com/@g /etc/apt/sources.list && \
            apt-get clean && \
            rm /etc/apt/sources.list.d/*

# 安装必要的库
RUN apt-get update && apt-get install -y software-properties-common
RUN add-apt-repository ppa:ubuntu-toolchain-r/test
RUN apt-get update && apt-get install -y --no-install-recommends \
    libcurl4-openssl-dev \
    wget \
    zlib1g-dev \
    git \
    pkg-config \
    sudo \
    ssh \
    libssl-dev \
    pbzip2 \
    pv \
    bzip2 \
    unzip \
    devscripts \
    lintian \
    fakeroot \
    dh-make \
    build-essential \
    libgl1-mesa-glx

# 安装 python3 环境
RUN apt-get install -y --no-install-recommends \
    python3 \
    python3-pip \
    python3-dev \
    python3-wheel &&\
    cd /usr/local/bin &&\
    ln -s /usr/bin/python3 python &&\
    ln -s /usr/bin/pip3 pip;

# 安装 TensorRT
RUN cd /tmp &&\
    wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb &&\
    dpkg -i nvidia-machine-learning-repo-*.deb && apt-get update
RUN v="${TRT_VERSION%.*}-1+cuda${CUDA_VERSION%.*}" &&\
    apt-get install -y libnvinfer7=${v} libnvinfer-plugin7=${v} libnvparsers7=${v} libnvonnxparsers7=${v} libnvinfer-dev=${v} libnvinfer-plugin-dev=${v} libnvparsers-dev=${v} python3-libnvinfer=${v} &&\
    apt-mark hold libnvinfer7 libnvinfer-plugin7 libnvparsers7 libnvonnxparsers7 libnvinfer-dev libnvinfer-plugin-dev libnvparsers-dev python3-libnvinfer

# 升级 pip 并切换成国内豆瓣源
RUN python3 -m pip install -i https://pypi.douban.com/simple/ --upgrade pip
RUN pip3 config set global.index-url https://pypi.douban.com/simple/
RUN pip3 install setuptools>=41.0.0

# 升级 Cmake(可选)
RUN cd /tmp && \
    wget https://github.com/Kitware/CMake/releases/download/v3.14.4/cmake-3.14.4-Linux-x86_64.sh && \
    chmod +x cmake-3.14.4-Linux-x86_64.sh && \
    ./cmake-3.14.4-Linux-x86_64.sh --prefix=/usr/local --exclude-subdir --skip-license && \
    rm ./cmake-3.14.4-Linux-x86_64.sh

# 设置环境变量和工作路径
ENV TRT_LIBPATH /usr/lib/x86_64-linux-gnu
ENV TRT_OSSPATH /workspace/TensorRT
ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${TRT_OSSPATH}/build/out:${TRT_LIBPATH}"
WORKDIR /workspace

# 设置语言环境为中文,防止 print 中文报错
ENV LANG C.UTF-8

RUN ["/bin/bash"]


# docker run -it --name tensorrt --gpus "0" hingwenwoong/tensorrt-docker:v1 /bin/bash
# docker exec -it 7ba7d4180a74 bash

cuda11

    # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

ARG CUDA_VERSION=11.1
ARG OS_VERSION=18.04

FROM nvidia/cuda:${CUDA_VERSION}-cudnn8-devel-ubuntu${OS_VERSION}
LABEL maintainer="NVIDIA CORPORATION"


ENV TRT_VERSION 7.2.3.4
SHELL ["/bin/bash", "-c"]


# Install requried libraries
RUN apt-get update && apt-get install -y software-properties-common
RUN add-apt-repository ppa:ubuntu-toolchain-r/test
RUN apt-get update && apt-get install -y --no-install-recommends \
    libcurl4-openssl-dev \
    wget \
    zlib1g-dev \
    git \
    pkg-config \
    sudo \
    ssh \
    libssl-dev \
    pbzip2 \
    pv \
    bzip2 \
    unzip \
    devscripts \
    lintian \
    fakeroot \
    dh-make \
    build-essential \
    libgl1-mesa-glx \
    vim

# Install python3
RUN apt-get install -y --no-install-recommends \
      python3 \
      python3-pip \
      python3-dev \
      python3-wheel &&\
    cd /usr/local/bin &&\
    ln -s /usr/bin/python3 python &&\
    ln -s /usr/bin/pip3 pip;

# Install TensorRT
RUN cd /tmp &&\
    wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb &&\
    dpkg -i nvidia-machine-learning-repo-*.deb && apt-get update
RUN v="${TRT_VERSION%.*}-1+cuda${CUDA_VERSION%.*}" &&\
    apt-get install -y libnvinfer7=${v} libnvinfer-plugin7=${v} libnvparsers7=${v} libnvonnxparsers7=${v} libnvinfer-dev=${v} libnvinfer-plugin-dev=${v} libnvparsers-dev=${v} python3-libnvinfer=${v} &&\
    apt-mark hold libnvinfer7 libnvinfer-plugin7 libnvparsers7 libnvonnxparsers7 libnvinfer-dev libnvinfer-plugin-dev libnvparsers-dev python3-libnvinfer

# 升级 pip 并切换成国内豆瓣源
RUN python3 -m pip install -i https://pypi.douban.com/simple/ --upgrade pip
RUN pip3 config set global.index-url https://pypi.douban.com/simple/
RUN pip3 install setuptools>=41.0.0

# Install Cmake
RUN cd /tmp && \
    wget https://github.com/Kitware/CMake/releases/download/v3.14.4/cmake-3.14.4-Linux-x86_64.sh && \
    chmod +x cmake-3.14.4-Linux-x86_64.sh && \
    ./cmake-3.14.4-Linux-x86_64.sh --prefix=/usr/local --exclude-subdir --skip-license && \
    rm ./cmake-3.14.4-Linux-x86_64.sh

# Download NGC client
RUN cd /usr/local/bin && wget https://ngc.nvidia.com/downloads/ngccli_cat_linux.zip && unzip ngccli_cat_linux.zip && chmod u+x ngc && rm ngccli_cat_linux.zip ngc.md5 && echo "no-apikey\nascii\n" | ngc config set

# Set environment and working directory
ENV TRT_LIBPATH /usr/lib/x86_64-linux-gnu
ENV TRT_OSSPATH /workspace/TensorRT
ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${TRT_OSSPATH}/build/out:${TRT_LIBPATH}"
WORKDIR /workspace

# 设置语言环境为中文,防止 print 中文报错
ENV LANG C.UTF-8

# 安装torch、onnx、pycuda
RUN pip3 install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html
RUN pip3 install onnx
RUN pip3 install pycuda
RUN pip3 install opencv-python

RUN ["/bin/bash"]


# docker build -t zxx/tensorrt:v2 -f Dockerfile .
# docker run -it --name tensorrt --gpus "2" zxx/tensorrt:v2 /bin/bash
# docker exec -ti -u root 446a83765f1f bash

你可能感兴趣的:(计算机视觉,大数据,python,big,data,spark)