萤火虫算法matlab实现,智能算法萤火虫算法Matlab源代码

【实例简介】来自于剑桥大学教授Yang Xinshe的萤火虫算法Matlab源码,适合各种寻优问题的建模,内含代码的详细说明

【实例截图】Firefly_Algorithm源代码

萤火虫算法matlab实现,智能算法萤火虫算法Matlab源代码_第1张图片

【核心代码】

% ======================================================== %

% Files of the Matlab programs included in the book: %

% Xin-She Yang, Nature-Inspired Metaheuristic Algorithms, %

% Second Edition, Luniver Press, (2010). www.luniver.com %

% ======================================================== %

% Firefly Algorithm by X S Yang (Cambridge University)

% Usage: firefly_simple([number_of_fireflies,MaxGeneration])

% eg: firefly_simple([12,50]);

function [best]=firefly_simple(instr)

% n=number of fireflies

% MaxGeneration=number of pseudo time steps

if nargin<1, instr=[12 50]; end

n=instr(1); MaxGeneration=instr(2);

rand('state',0); % Reset the random generator

% ------ Four peak functions ---------------------

str1='exp(-(x-4)^2-(y-4)^2) exp(-(x 4)^2-(y-4)^2)';

str2=' 2*exp(-x^2-(y 4)^2) 2*exp(-x^2-y^2)';

funstr=strcat(str1,str2);

% Converting to an inline function

f=vectorize(inline(funstr));

% range=[xmin xmax ymin ymax];

range=[-5 5 -5 5];

% ------------------------------------------------

alpha=0.2; % Randomness 0--1 (highly random)

gamma=1.0; % Absorption coefficient

% ------------------------------------------------

% Grid values are used for display only

Ngrid=100;

dx=(range(2)-range(1))/Ngrid;

dy=(range(4)-range(3))/Ngrid;

[x,y]=meshgrid(range(1):dx:range(2),...

range(3):dy:range(4));

z=f(x,y);

% Display the shape of the objective function

figure(1); surfc(x,y,z);

% ------------------------------------------------

% generating the initial locations of n fireflies

[xn,yn,Lightn]=init_ffa(n,range);

% Display the paths of fireflies in a figure with

% contours of the function to be optimized

figure(2);

% Iterations or pseudo time marching

for i=1:MaxGeneration, %%%%% start iterations

% Show the contours of the function

contour(x,y,z,15); hold on;

% Evaluate new solutions

zn=f(xn,yn);

% Ranking the fireflies by their light intensity

[Lightn,Index]=sort(zn);

xn=xn(Index); yn=yn(Index);

xo=xn; yo=yn; Lighto=Lightn;

% Trace the paths of all roaming fireflies

plot(xn,yn,'.','markersize',10,'markerfacecolor','g');

% Move all fireflies to the better locations

[xn,yn]=ffa_move(xn,yn,Lightn,xo,yo,Lighto,alpha,gamma,range);

drawnow;

% Use "hold on" to show the paths of fireflies

hold off;

end %%%%% end of iterations

best(:,1)=xo'; best(:,2)=yo'; best(:,3)=Lighto';

% ----- All subfunctions are listed here ---------

% The initial locations of n fireflies

function [xn,yn,Lightn]=init_ffa(n,range)

xrange=range(2)-range(1);

yrange=range(4)-range(3);

xn=rand(1,n)*xrange range(1);

yn=rand(1,n)*yrange range(3);

Lightn=zeros(size(yn));

% Move all fireflies toward brighter ones

function [xn,yn]=ffa_move(xn,yn,Lightn,xo,yo,...

Lighto,alpha,gamma,range)

ni=size(yn,2); nj=size(yo,2);

for i=1:ni,

% The attractiveness parameter beta=exp(-gamma*r)

for j=1:nj,

r=sqrt((xn(i)-xo(j))^2 (yn(i)-yo(j))^2);

if Lightn(i)

beta0=1; beta=beta0*exp(-gamma*r.^2);

xn(i)=xn(i).*(1-beta) xo(j).*beta alpha.*(rand-0.5);

yn(i)=yn(i).*(1-beta) yo(j).*beta alpha.*(rand-0.5);

end

end % end for j

end % end for i

[xn,yn]=findrange(xn,yn,range);

% Make sure the fireflies are within the range

function [xn,yn]=findrange(xn,yn,range)

for i=1:length(yn),

if xn(i)<=range(1), xn(i)=range(1); end

if xn(i)>=range(2), xn(i)=range(2); end

if yn(i)<=range(3), yn(i)=range(3); end

if yn(i)>=range(4), yn(i)=range(4); end

end

% ============== end =====================================

你可能感兴趣的:(萤火虫算法matlab实现)