PyTorch 笔记 (四)

import pandas as pd
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
from torch import optim
from torchvision import datasets, transforms
from torch.utils.data.dataloader import default_collate
from torchvision.datasets import ImageFolder
from torchvision.datasets.folder import default_loader

# PyTorch
# nnConv2d() 就是 PyTorch 中的卷积模块,里边常用五个参数,
# in_channels, out_channels, kernel_size, strid, padding, dilation, groups, bias
# in_channels 对应的是输入数据体的深度,
# out_channels 表示输出数据体的深度
# kernel_size 表示滤波器 (卷积核) 的大小,可以使用一个数字表示高河宽相同的卷积核,
#   也可以使用不同的数字来表示高和宽不同的卷积核
# stride 表示滑动的步长
# padding 表示填充
# bias 是一个布尔值,表示使用偏置
# groups 表示输出数据体深度和输入数据体深度上的联系, 默认 groups = 1
# dilation 表示卷积对于输入数据体的空间间隔

# nn.MaxPool2d() 表示网络中的最大池化层,其中从参数有 kernel_size, strid, padding, dilation,
#    return_indices, ceil_mode
# kernel_size,strid , padding ,dilation 与卷积层参数含义相同
# return_indices 表示是否返回最大值所处的下标
# ceil_mode 表示使用一些方格代替层结构

# nn.AvgPool2d() 表示均值池化,里边的参数与上边相同,
# 多一个 count_include_pad 这个参数表示计算均值的时候是否包含零填充

# 构建多层卷积神经网络
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__() # 3, 32, 32
        layer1 = nn.Sequential()
        layer1.add_module('conv1', nn.Conv2d(3, 32, 3, 1, padding=1))
        # 32, 32, 32
        layer1.add_module('relu1', nn.ReLU(True))
        layer1.add_module('pool1', nn.MaxPool2d(2, 2)) # 32 16 16
        self.layer1 = layer1

        layer2 = nn.Sequential()
        layer2.add_module('conv2', nn.Conv2d(32, 64, 3, 1, padding=1)) # 64 16 16
        layer2.add_module('relu2', nn.ReLU(True))
        layer2.add_module('pool', nn.MaxPool2d(2, 2)) # 64 8 8
        self.layer2 = layer2

        layer3 = nn.Sequential()
        layer3.add_module('conv3', nn.Conv2d(64, 128, 3, 1, padding=1)) # 128 8 8
        layer3.add_module('relu3', nn.ReLU(True))
        layer3.add_module('pool3', nn.MaxPool2d(2, 2)) # 128 4 4
        self.layer3 = layer3

        layer4 = nn.Sequential()
        layer4.add_module('fc1', nn.Linear(2048, 512))
        layer4.add_module('fc_relu', nn.ReLU(True))
        layer4.add_module('fc2', nn.Linear(512, 64))
        layer4.add_module('fc_relu2', nn.ReLU(True))
        layer4.add_module('fc3', nn.Linear(64, 10))
        self.layer4 = layer4

    def forward(self, x):
        conv1 = self.layer1(x)
        conv2 = self.layer(conv1)
        conv3 = self.layer3(conv2)
        fc_input = conv3.view(conv3.size(0), -1)
        fc_out = self.layer4(fc_input)
        return fc_out

model = SimpleCNN()
print(model)
# 建立卷积层和池化层是将输出数据体的大小写在代码旁边

# nn.Module 有几个重要的属性,
# children() 会返回下一级模块的迭代器
# modules() 会返回模型中所有模块的迭代器
new_model = nn.Sequential(*list(model.children())[:2])
print(new_model)

# conv_model = nn.Sequential()
# for layer in model.named_modules():
#     if isinstance(layer[1], nn.Conv2d):
#         conv_model.add_module(layer[0], layer[1])
#
# print(conv_model)

# nn.Module 中参数初始化
# named_parameters() 是给出网络层的名字和参数的迭代器
# parmerters() 会给出一个网络的全部参数的迭代器
for param in model.named_parameters():
    print(param[0])

# LeNet
'''
总共有七层,两层卷积和两层池化交替出现
整体结构是
input layer
convulational layer
pooling layer
activation function
convulational layer
pooling layer
activation function
convulational layer
full connect layer
full connector layer
output layer

1. input 层
输入为 32 * 32 pixel 的图像

2. C1 层
C1 层为卷积层,kernel size = 5 * 5, 步长为1,无填充,生成 6 个 feature map.
无填充,所以生成的 feature map 的长和宽为 28 * 28  ((32 - 5 + 0 * 2) / 1 + 1 = 28)
参数个数为 (5 * 5 + 1) * 6 = 156, 其中 5 * 5 对应 kernel size, 1 对应 bias, 6 是 
    feature map 的个数
连接数 156 * 28 * 28 = 122304 

3. S2 层
S2 层为降采样层,kernel size 为 2 * 2,长和宽的步长都为2,无填充
S2 层其实相当于降采样 + 激活层,先是降采样,然后激活函数 sigmoid 非线性输出。
新生成的 feature map 的大小为 (28 /2) * (28 / 2) = 14 * 14

4. C3 层
C3 层为卷积层,kernel size 为 5 * 5,步长为1,生成 16 个 feature map,

5. S4 层
S4 层为降维采样,此层配置如同 S2 层,kernel size 为 2 * 2,长和宽的步长均为 2,无填充
新生成的 feature map 为 5 * 5

6. C5 层
C5 层为卷积层, kernel size 为 5 * 5,步长为 1,无填充,全连接生成 120 个 feature map
C5 层可以理解成两层,第一层是卷积层,第二层是全连接层

7. F6 层
F6 层是全连接层

8. output层

'''
class Lenet(nn.Module):
    def __init__(self):
        super(Lenet, self).__init__()
        # 1 @ 32 * 32
        layer1 = nn.Sequential()
        layer1.add_module('conv1', nn.Conv2d(1, 6, 5)) # 6 @ 28 * 28
        layer1.add_module('pool1', nn.MaxPool2d(2, 2)) # 6 @ 14 * 14
        self.layer1 = layer1

        layer2 = nn.Sequential()
        layer2.add_module('conv2', nn.Conv2d(6, 16, 5)) # 16 @ 10 * 10
        layer2.add_module('pool2', nn.MaxPool2d(2, 2)) # 16 @ 5 * 5
        self.layer2 = layer2

        layer3 = nn.Sequential()
        layer3.add_module('fc1', nn.Linear(400, 120))
        layer3.add_module('fc2', nn.Linear(120, 84))
        layer3.add_module('fc3', nn.Linear(84, 10))
        self.layer3 = layer3

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = x.view(x.size(0), -1)
        x = self.layer3(x)
        return x

model_LeNet = Lenet()
print(model_LeNet)


# AlexNet
class AlexNet(nn.Module):
    def __init__(self, num_classes):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size = 11, stride  = 4, padding = 2),
            nn.ReLU(inplace = True),
            nn.MaxPool2d(kernel_size = 3, stride = 2),
            nn.Conv2d(64, 192, kernel_size = 5, padding = 2),
            nn.ReLU(inplace = True),
            nn.MaxPool2d(kernel_size = 3, stride = 2),
            nn.Conv2d(192, 384, kernel_size = 3, padding = 1),
            nn.ReLU(inplace = True),
            nn.Conv2d(384, 256, kernel_size = 3, padding = 1),
            nn.ReLU(inplace = True),
            nn.Conv2d(256, 256, kernel_size = 3, padding = 1),
            nn.ReLU(inplace = True),
            nn.MaxPool2d(kernel_size = 3, stride = 2)
        )

        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace = True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace = True),
            nn.Linear(4096, num_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), 256 * 6 * 6)
        x = self.classifier(x)
        return x

model_AlexNet = AlexNet(1000)
print(model_AlexNet)

# VGGNet 使用更小的卷积滤波器 (3 * 3) 和更小的最大池化层 (2 * 2)
# 使用更小的滤波器是因为层叠很多小的滤波器的感受也和一个大的滤波器的感受野
# 是相同的,还能减少参数,同时有更深的网络结构。

# GoogLeNet
# 也叫 InceptionNet 使用 Inception 模块,使用全局最大池化替代全连接层
# Inception 模块设计了一个局部的网络拓扑结构,然后将这些模块堆叠在一起形成
# 一个抽象层网络结构。具体来说就是使用几个并行的滤波器对输入进行卷积和池化。
# 这些滤波器有不同的感受野,最后将输出的结果按深度拼接在一起形成输出层。
# 为了减少层数,增加 1 * 1 的卷积层来降低输入层的维度,是网络参数减少,从而
# 减少了网络的复杂性。
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias = False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps = 0.001)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return nn.ReLU(x, inplace = True)

class Inception(nn.Module):
    def __init__(self, in_channels, pool_features):
        super(Inception, self).__init__()
        self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size = 1)
        self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size = 1)
        self.branch5x5_2 = BasicConv2d(48, 64, kernel_size = 2)

        self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size = 1)
        self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size = 3, padding = 1)
        self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size = 3, padding = 1)

        self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size = 1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = nn.AvgPool2d(x, kernel_size = 3, stride = 1, padding = 1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return torch.cat(outputs, 1)  # 按照深度拼接起来

model_googlenet = Inception(100, 200)
print(model_googlenet)

# ResNet
# 在不断加深神经网络的时候,会出现一个 Degradation,
# ResNet 相当于将学习目标改变了,不再是学习一个完整的输出 H(x), 而是学习输出和
# 输入的差值 F(x) = H(x) - x

def conv3x3(in_planes, out_planes, stride = 1):
    '''3x3 convolution with padding'''
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size = 3,
        stride = stride,
        padding = 1,
        bias = False
    )

class BasicBlock(nn.Module):
    def __init__(self, inplanes, planes, stride = 1, downsample = None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace = True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

'''
图像增强的方法:
torchvision.transforms 包括所有图像增强的方法
    Scale  对图片的尺度进行缩小或放大
    CenterCrop  对图像正中心进行给定大小的裁剪
    RandomCrop  对图片进行给定大小的随机裁剪
    RandomHorizaontalFlip  对图片进行概率为 0.5 的随机水平翻转
    RandomSizeCrop  首先对图片进行随机尺寸的此裁剪,然后对裁剪的图片进行一个随机比例的缩放
        最后将图片变成给定的大小
    Pad  对图片进行边界零填充
'''

'''
CIFAR10 数据集有 60000 张图片,每张图片的大小都是 32 X 32 的三通道的彩色图,一共是
10 中类别,每种类别有 6000 张图片
'''


你可能感兴趣的:(DL,&,ML,c++,python,矩阵)