pytorch实现从本地加载 .pth 格式模型
可以从官网加载预训练好的模型:
import torchvision.models as models
model = models.vgg16(pretrained = True)
print(model)
但是经常会出现因为下载速度太慢而出现requests.exceptions.ConnectionError: ('Connection aborted.', TimeoutError(10060, '由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败。', None, 10060, None))这种错误,因此需要我们手动去下载 .pth 文件(百度云也很慢,如果你是SVIP,当我没说;迅雷的速度也还可以),然后从本地加载。
从本地加载只需要把上面的代码换成如下:
import torchvision.models as models
model = models.vgg16(pretrained=False)
pre=torch.load(r'.\kaggle_dog_vs_cat\pretrain\vgg16-397923af.pth')
model.load_state_dict(pre)
如果你模型不是用的vgg16,而是用的vgg11或者vgg13,只需要修改语句 model = models.vgg16(pretrained=False) 为对应模型的函数即可。
以上这篇pytorch实现从本地加载 .pth 格式模型就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
时间: 2020-02-12
pytorch最后的权重文件是.pth格式的. 经常遇到的问题: 进行finutune时,改配置文件中的学习率,发现程序跑起来后竟然保持了以前的学习率, 并没有使用新的学习率. 原因: 首先查看.pth文件中的内容,我们发现它其实是一个字典格式的文件 其中保存了optimizer和scheduler,所以再次加载此文件时会使用之前的学习率. 我们只需要权重,也就是model部分,将其导出就可以了 import torch original = torch.load('path/to/your/c
有一些非常流行的网络如 resnet.squeezenet.densenet等在pytorch里面都有,包括网络结构和训练好的模型. pytorch自带模型网址:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-models/ 按官网加载预训练好的模型: import torchvision.models as models # pretrained=True就可以使用预训练的模型 resnet18 = mod
在常见的pytorch代码中,我们见到的初始化方式都是调用init类对每层所有参数进行初始化.但是,有时我们有些特殊需求,比如用某一层的权重取优化其它层,或者手动指定某些权重的初始值. 核心思想就是构造和该层权重同一尺寸的矩阵去对该层权重赋值.但是,值得注意的是,pytorch中各层权重的数据类型是nn.Parameter,而不是Tensor或者Variable. import torch import torch.nn as nn import torch.optim as optim imp
pytorch 官网给出的例子中都是使用了已经定义好的特殊数据集接口来加载数据,而且其使用的数据都是官方给出的数据.如果我们有自己收集的数据集,如何用来训练网络呢?此时需要我们自己定义好数据处理接口.幸运的是pytroch给出了一个数据集接口类(torch.utils.data.Dataset),可以方便我们继承并实现自己的数据集接口. torch.utils.data torch的这个文件包含了一些关于数据集处理的类. class torch.utils.data.Dataset: 一个抽象类
在将自定义的网络权重加载到网络中时,报错: AttributeError: 'dict' object has no attribute 'seek'. You can only torch.load from a file that is seekable. Please pre-load the data into a buffer like io.BytesIO and try to load from it instead. 我们一步一步分析. 模型网络权重保存额代码是:torch.sa
如下所示: #获取模型权重 for k, v in model_2.state_dict().iteritems(): print("Layer {}".format(k)) print(v) #获取模型权重 for layer in model_2.modules(): if isinstance(layer, nn.Linear): print(layer.weight) #将一个模型权重载入另一个模型 model = VGG(make_layers(cfg['E']), **kw
函数的增益值 torch.nn.init.calculate_gain(nonlinearity, param=None) 提供了对非线性函数增益值的计算. 增益值gain是一个比例值,来调控输入数量级和输出数量级之间的关系. fan_in和fan_out pytorch计算fan_in和fan_out的源码 def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2:
自定义Autograd函数 对于浅层的网络,我们可以手动的书写前向传播和反向传播过程.但是当网络变得很大时,特别是在做深度学习时,网络结构变得复杂.前向传播和反向传播也随之变得复杂,手动书写这两个过程就会存在很大的困难.幸运地是在pytorch中存在了自动微分的包,可以用来解决该问题.在使用自动求导的时候,网络的前向传播会定义一个计算图(computational graph),图中的节点是张量(tensor),两个节点之间的边对应了两个张量之间变换关系的函数.有了计算图的存在,张量的梯度计算也
一.自绘控件 下面我们准备来自定义一个计数器View,这个View可以响应用户的点击事件,并自动记录一共点击了多少次.新建一个CounterView继承自View,代码如下所示: 可以看到,首先我们在CounterView的构造函数中初始化了一些数据,并给这个View的本身注册了点击事件,这样当CounterView被点击的时候,onClick()方法就会得到调用.而onClick()方法中的逻辑就更加简单了,只是对mCount这个计数器加1,然后调用invalidate()方法.通过 Andr
需要自己过滤 optimizer.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3) 另外,如果是Variable,则可以初始化时指定 j = Variable(torch.randn(5,5), requires_grad=True) 但是如果是 m = nn.Linear(10,10) 是没有requires_grad传入的 m.requires_grad也没有 需要 for i in m.parameter
目标:优化代码,利用多进程,进行近实时预处理.网络预测及后处理: 本人尝试了pytorch的multiprocessing,进行多进程同步处理以上任务. from torch.multiprocessing import Pool,Manager 为了进行各进程间的通信,使用Queue,作为数据传输载体. manager = Manager() input_queue = manager.Queue() output_queue = manager.Queue() show_queue = ma
背景 使用pytorch时,有一个yolov3的bug,我认为涉及到学习率的调整.收集到tencent yolov3和mxnet开源的yolov3,两个优化器中的学习率设置不一样,而且使用GPU数目和batch的更新也不太一样.据此,我简单的了解了下pytorch的权重梯度的更新策略,看看能否一窥究竟. 对代码说明 共三个实验,分布写在代码中的(一)(二)(三)三个地方.运行实验时注释掉其他两个 实验及其结果 实验(三): 不使用zero_grad()时,grad累加在一起,官网是使用accum