(图像/视频/实时网络摄像头)动作位点预测(human-pose-estimation)手把手教程:Anaconda+Jupyter+Opencv

没有环境的看这:链接: Anaconda+Jupyter+Opencv+tensorflow安装.

注意:因为我们要做图像处理,我希望你需要处理的图像、视频和程序保存在同一位置。
比如:

(图像/视频/实时网络摄像头)动作位点预测(human-pose-estimation)手把手教程:Anaconda+Jupyter+Opencv_第1张图片
代码实现部分:

函数声明和参数设计:
(图像/视频/实时网络摄像头)动作位点预测(human-pose-estimation)手把手教程:Anaconda+Jupyter+Opencv_第2张图片
我们可以看到BODY_PARTS共收录到18个身体部位。也就是结果图中的红点。

BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4,
               "LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9,
               "RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14,
               "LEye": 15, "REar": 16, "LEar": 17, "Background": 18 }

POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"],
               ["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"],
               ["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"],
               ["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"],
               ["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ]

载入图像:
(图像/视频/实时网络摄像头)动作位点预测(human-pose-estimation)手把手教程:Anaconda+Jupyter+Opencv_第3张图片
构建框架:
(图像/视频/实时网络摄像头)动作位点预测(human-pose-estimation)手把手教程:Anaconda+Jupyter+Opencv_第4张图片
代码:

#键框架,设立参数
#键框架,设立参数
def pose_estimation(frame):
    frameWidth = frame.shape[1]
    frameHeight = frame.shape[0]
    
    net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False))
    out = net.forward()
    out = out[:, :19, :, :]  # MobileNet output [1, 57, -1, -1], we only need the first 19 elements

    assert(len(BODY_PARTS) == out.shape[1])

    points = []#list
    for i in range(len(BODY_PARTS)):
        # Slice heatmap of corresponging body's part.
        heatMap = out[0, i, :, :]

        # Originally, we try to find all the local maximums. To simplify a sample
        # we just find a global one. However only a single pose at the same time
        # could be detected this way.
        _, conf, _, point = cv.minMaxLoc(heatMap)
        x = (frameWidth * point[0]) / out.shape[3]
        y = (frameHeight * point[1]) / out.shape[2]
        # Add a point if it's confidence is higher than threshold.
        points.append((int(x), int(y)) if conf > thr else None)
    for pair in POSE_PAIRS:
        partFrom = pair[0]
        partTo = pair[1]
        assert(partFrom in BODY_PARTS)
        assert(partTo in BODY_PARTS)

        idFrom = BODY_PARTS[partFrom]
        idTo = BODY_PARTS[partTo]

        if points[idFrom] and points[idTo]:
            cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3)
            cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
            cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
            
    t, _ = net.getPerfProfile()
    freq = cv.getTickFrequency() / 1000
    cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
    return frame

结果:
(图像/视频/实时网络摄像头)动作位点预测(human-pose-estimation)手把手教程:Anaconda+Jupyter+Opencv_第5张图片
视频演示:
(图像/视频/实时网络摄像头)动作位点预测(human-pose-estimation)手把手教程:Anaconda+Jupyter+Opencv_第6张图片
代码:

cap=cv.VideoCapture('2021-04-03_190508.mp4')
cap.set(3,800)
cap.set(4,800)

if not cap.isOpened():
    cap=cv.VideoCapture(0)
if not cap.isOpened():
    raise IOError('Can not open video')
    
while cv.waitKey(1)<0:
    hasFrame,frame=cap.read()
    if not hasFrame:
        cv.waitKey()
        break
    frameWidth = frame.shape[1]
    frameHeight = frame.shape[0]
    
    net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False))
    out = net.forward()
    out = out[:, :19, :, :]  # MobileNet output [1, 57, -1, -1], we only need the first 19 elements

    assert(len(BODY_PARTS) == out.shape[1])

    points = []#list
    for i in range(len(BODY_PARTS)):
        # Slice heatmap of corresponging body's part.
        heatMap = out[0, i, :, :]

        # Originally, we try to find all the local maximums. To simplify a sample
        # we just find a global one. However only a single pose at the same time
        # could be detected this way.
        _, conf, _, point = cv.minMaxLoc(heatMap)
        x = (frameWidth * point[0]) / out.shape[3]
        y = (frameHeight * point[1]) / out.shape[2]
        # Add a point if it's confidence is higher than threshold.
        points.append((int(x), int(y)) if conf > thr else None)
    for pair in POSE_PAIRS:
        partFrom = pair[0]
        partTo = pair[1]
        assert(partFrom in BODY_PARTS)
        assert(partTo in BODY_PARTS)

        idFrom = BODY_PARTS[partFrom]
        idTo = BODY_PARTS[partTo]

        if points[idFrom] and points[idTo]:
            cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3)
            cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
            cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
            
    t, _ = net.getPerfProfile()
    freq = cv.getTickFrequency() / 1000
    cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
    
    cv.imshow('Pose estimation Test',frame)


结果演示:
(我录屏了一段LISA的舞蹈,你们也可以自己录视频。)
(图像/视频/实时网络摄像头)动作位点预测(human-pose-estimation)手把手教程:Anaconda+Jupyter+Opencv_第7张图片
(图像/视频/实时网络摄像头)动作位点预测(human-pose-estimation)手把手教程:Anaconda+Jupyter+Opencv_第8张图片
(图像/视频/实时网络摄像头)动作位点预测(human-pose-estimation)手把手教程:Anaconda+Jupyter+Opencv_第9张图片
实时网络摄像头:

(图像/视频/实时网络摄像头)动作位点预测(human-pose-estimation)手把手教程:Anaconda+Jupyter+Opencv_第10张图片
代码:

cap=cv.VideoCapture(1)
cap.set(cv.CAP_PROP_FPS,10)
cap.set(3,800)
cap.set(4,800)

if not cap.isOpened():
    cap=cv.VideoCapture(0)
if not cap.isOpened():
    raise IOError('Can not open webcarm')
    
while cv.waitKey(1)<0:
    hasFrame,frame=cap.read()
    if not hasFrame:
        cv.waitKey()
        break
    frameWidth = frame.shape[1]
    frameHeight = frame.shape[0]
    
    net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False))
    out = net.forward()
    out = out[:, :19, :, :]  # MobileNet output [1, 57, -1, -1], we only need the first 19 elements

    assert(len(BODY_PARTS) == out.shape[1])

    points = []#list
    for i in range(len(BODY_PARTS)):
        # Slice heatmap of corresponging body's part.
        heatMap = out[0, i, :, :]

        # Originally, we try to find all the local maximums. To simplify a sample
        # we just find a global one. However only a single pose at the same time
        # could be detected this way.
        _, conf, _, point = cv.minMaxLoc(heatMap)
        x = (frameWidth * point[0]) / out.shape[3]
        y = (frameHeight * point[1]) / out.shape[2]
        # Add a point if it's confidence is higher than threshold.
        points.append((int(x), int(y)) if conf > thr else None)
    for pair in POSE_PAIRS:
        partFrom = pair[0]
        partTo = pair[1]
        assert(partFrom in BODY_PARTS)
        assert(partTo in BODY_PARTS)

        idFrom = BODY_PARTS[partFrom]
        idTo = BODY_PARTS[partTo]

        if points[idFrom] and points[idTo]:
            cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3)
            cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
            cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
            
    t, _ = net.getPerfProfile()
    freq = cv.getTickFrequency() / 1000
    cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
    
    cv.imshow('Pose estimation Test',frame)

我的结果已经运行出来,不过这里就不给大家放结果图了。
完整的程序文件会上传。

你可能感兴趣的:(图像处理,python,opencv,anaconda,深度学习,机器学习)