线性支持向量机-合页损失函数(Hinge Loss)

  线性支持向量机学习有另一种解释,那就是最小化以下目标函数:
∑ i = 1 N [ 1 − y i ( w ⋅ x i + b ) ] + + λ ∣ ∣ w ∣ ∣ 2 \sum_{i=1}^N[1-y_i(w · x_i+b)]_+ + \lambda ||w||^2 i=1N[1yi(wxi+b)]++λw2
目标函数得第一项是经验损失函数或者经验风险,函数 L ( y ( w ⋅ x + b ) ) = [ 1 − y ( w ⋅ x + b ) ] + L(y(w·x+b)) = [1-y(w·x+b)]_+ L(y(wx+b))=[1y(wx+b)]+称为合页损失函数。下标+表示以下取正值得函数。
[ z ] + = { z , z > 0 0 , z ≤ 0 [z]_+ =\begin{cases} z,&z>0\\ 0,&z \le 0 \end{cases} [z]+={z,0,z>0z0
目标函数第二项是系数为 λ \lambda λ w w w L 2 L_2 L2范数,是正则化项。

定理证明

线性支持向量机原始最优化问题:
(1) min ⁡ w , b , ξ 1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 N ξ i \min_{w,b,\xi} \dfrac{1}{2} ||w||^2 + C\sum_{i=1}^{N}\xi_i \tag{1} w,b,ξmin21w2+Ci=1Nξi(1)
(2) s . t .   y i ( w ⋅ x i + b ) ≥ 1 − ξ i , i = 1 , 2 , … , N s.t. \ y_i(w·x_i+b) \ge 1- \xi_i,i=1,2,\dots,N \tag{2} s.t. yi(wxi+b)1ξi,i=1,2,,N(2)
(3) ξ i ≥ 0 , i = 1 , 2 , … , N \xi_i \ge 0,i=1,2,\dots,N \tag{3} ξi0,i=1,2,,N(3)
等价于最优化问题 (4) min ⁡ w , b ∑ i = 1 N [ 1 − y i ( w ⋅ x i + b ) ] + + λ ∣ ∣ w ∣ ∣ 2 \min\limits_{w,b} \sum_{i=1}^N [1-y_i(w·x_i+b)]_+ + \lambda||w||^2 \tag{4} w,bmini=1N[1yi(wxi+b)]++λw2(4)

证明:
[ 1 − y i ( w ⋅ x i + b ) ] + = ξ i [1-y_i(w·x_i+b)]_+ = \xi_i [1yi(wxi+b)]+=ξi,则 ξ i ≥ 0 \xi_i \ge 0 ξi0,式(2)成立。
1 − y i ( w ⋅ x i + b ) > 0 1-y_i(w·x_i+b)>0 1yi(wxi+b)>0时,有 1 − y i ( w ⋅ x i + b ) = ξ i 1-y_i(w·x_i+b) = \xi_i 1yi(wxi+b)=ξi y i ( w ⋅ x i + b ) = 1 − ξ i y_i(w·x_i+b)=1-\xi_i yi(wxi+b)=1ξi;当 1 − y i ( w ⋅ x i + b ) ≤ 0 1-y_i(w·x_i+b) \le0 1yi(wxi+b)0时,有 ξ i = 0 \xi_i =0 ξi=0 y i ( w ⋅ x i + b ) ≥ 1 − ξ i y_i(w·x_i+b) \ge 1-\xi_i yi(wxi+b)1ξi,故(3)式成立。
于是 w , b , ξ w,b,\xi w,b,ξ 满足约束条件(2)(3),所以最优化问题(4)可以写成 min ⁡ w , b ∑ i = 1 N ξ i + λ ∣ ∣ w ∣ ∣ 2 \min\limits_{w,b} \sum_{i=1}^N\xi_i + \lambda||w||^2 w,bmini=1Nξi+λw2,若取 C ⋅ 2 λ = 1 C·2\lambda=1 C2λ=1,则 min ⁡ w , b 1 C ( 1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 N ξ i ) \min\limits_{w,b} \dfrac{1}{C}{(\dfrac{1}{2}||w||^2+C\sum_{i=1}^N\xi_i)} w,bminC1(21w2+Ci=1Nξi)

你可能感兴趣的:(线性支持向量机-合页损失函数(Hinge Loss))