VGG神经网络搭建实例----pytorch

笔记,感谢B站up:霹雳巴拉Wz

1.搭建模型脚本model.py

import torch.nn as nn
import torch

# 定义分类网络结构(全连接层)
class VGG(nn.Module):
	# 初始化函数
	# feature是后面make_features函数提取特征网络结构;
	# num_classes:分类的类别个数
	# 是否对网络权重进行初始化
    def __init__(self, features, num_classes=1000, init_weights=False):
        super(VGG, self).__init__()
        self.features = features
        # 通过nn.Sequential函数生成全连接层网络
        self.classifier = nn.Sequential(
        	# 展平处理与全连接之前
            nn.Dropout(p=0.5), # 减少过拟合,50%失活神经元
            nn.Linear(512*7*7, 2048),  # 展平后的参数
            nn.ReLU(True),  # 激活函数
            nn.Dropout(p=0.5), 
            nn.Linear(2048, 2048),  # 第二层全连接层
            nn.ReLU(True),
            nn.Linear(2048, num_classes)  # 输出层
        )
        if init_weights:  #  是否对网络进行初始化
            self._initialize_weights()
	# 正向传播
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.features(x) # 进入网络
        # N x 512 x 7 x 7
        x = torch.flatten(x, start_dim=1) # 展平
        # N x 512*7*7
        x = self.classifier(x) # 分类
        return x
	# 初始化权重函数
    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                # nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

# 将cfgs网络结构的参数list类型传入
# make_feature 生成提取特征网络结构
def make_features(cfg: list):
    layers = []       # 存入结构
    in_channels = 3   # 彩色通道
    for v in cfg:     # 遍历配置列表
        if v == "M":  # 若是池化层 
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]  #创建池化
        else:		#  创建卷积层
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)  # v是参数64
            layers += [conv2d, nn.ReLU(True)] # 拼接激活函数
            in_channels = v  # 深度,为下一层(下一次循环)的in_channels 赋新值
    return nn.Sequential(*layers) # 有个*,代表是非关键字传入

# 四个网络结构
cfgs = {
    'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}

# 模型实例化
def vgg(model_name="vgg16", **kwargs):
    try:
        cfg = cfgs[model_name]
    except:
        print("Warning: model number {} not in cfgs dict!".format(model_name))
        exit(-1)
    model = VGG(make_features(cfg), **kwargs) # 第一次参数:feature ,第二个:分类字典和是否初始化参数
    return model

四个网络结构
cfgs = {
‘vgg11’: [64, ‘M’, 128, ‘M’, 256, 256, ‘M’, 512, 512, ‘M’, 512, 512, ‘M’],
‘vgg13’: [64, 64, ‘M’, 128, 128, ‘M’, 256, 256, ‘M’, 512, 512, ‘M’, 512, 512, ‘M’],
‘vgg16’: [64, 64, ‘M’, 128, 128, ‘M’, 256, 256, 256, ‘M’, 512, 512, 512, ‘M’, 512, 512, 512, ‘M’],
‘vgg19’: [64, 64, ‘M’, 128, 128, ‘M’, 256, 256, 256, 256, ‘M’, 512, 512, 512, 512, ‘M’, 512, 512, 512, 512, ‘M’],
}
例如:‘vgg11’: [64, ‘M’, 128, ‘M’, 256, 256, ‘M’, 512, 512, ‘M’, 512, 512, ‘M’]
如下图所示A模型结构图: 64:卷积层;‘M’:池化层
VGG神经网络搭建实例----pytorch_第1张图片

2.训练脚本train.py

== 训练脚本和预测脚本代码解释在AlexNet中解释过了==

import os
import json

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import torch.optim as optim
from tqdm import tqdm

from model import vgg


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))
	# 对数据集处理
    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224), # 随机裁剪
                                     transforms.RandomHorizontalFlip(), # 水平翻转
                                     transforms.ToTensor(),				# tensor格式
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),  # 标准处理
        "val": transforms.Compose([transforms.Resize((224, 224)),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

    data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path
    image_path = os.path.join(data_root, "data_set", "flower_data")  # flower data set path
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])
    train_num = len(train_dataset)

    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    batch_size = 32
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)

    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)
    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))

    # test_data_iter = iter(validate_loader)
    # test_image, test_label = test_data_iter.next()

    model_name = "vgg16"
    # num_classes和init_weights两个参数传递保存到 model.py的vgg(model_name,**kwargs)的第二个参数中
    net = vgg(model_name=model_name, num_classes=5, init_weights=True)
    net.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.0001)

    epochs = 30
    best_acc = 0.0
    save_path = './{}Net.pth'.format(model_name)
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            outputs = net(images.to(device))
            loss = loss_function(outputs, labels.to(device))
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)

        # validate
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)

    print('Finished Training')


if __name__ == '__main__':
    main()

predict.py

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import vgg


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # load image
    img_path = "../tulip.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    json_file = open(json_path, "r")
    class_indict = json.load(json_file)
    
    # create model
    model = vgg(model_name="vgg16", num_classes=5).to(device)
    # load model weights
    weights_path = "./vgg16Net.pth"
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    model.load_state_dict(torch.load(weights_path, map_location=device))

    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    print(print_res)
    plt.show()


if __name__ == '__main__':
    main()

你可能感兴趣的:(#,深度学习-图像分类,深度学习,卷积神经网络,pytorch)