C#联合OpenCV进行图像拼接

CsharpOpencv图像拼接

简单的图像拼接

简单粗暴的将两张图片水平或者垂直拼接

                                                                

C#联合OpenCV进行图像拼接_第1张图片

C#联合OpenCV进行图像拼接_第2张图片

            var image1= Cv2.ImRead("mandrill.png", ImreadModes.Color);      
            var image2 = Cv2.ImRead("lenna.png", ImreadModes.Color);
            //修改图片的尺寸
            Cv2.Resize(image1, image1, image2.Size());
            var Himagejoint = new Mat();
            var Vimagejoint = new Mat();
            var imagetuple = new Mat[] { image1, image2 };
            //水平拼接
            Cv2.HConcat(imagetuple, Himagejoint);
            //垂直拼接
            Cv2.VConcat(imagetuple, Vimagejoint);

            Cv2.ImShow("Himagejoint", Himagejoint);
            Cv2.ImShow("Vimagejoint", Vimagejoint);

水平拼接结果图 

垂直拼接结果图 

使用特征点+透视变换的方式进行拼接

参考C++版本https://www.jb51.net/article/255900.htm](https://www.jb51.net/article/255900.htm

参考Python版本https://www.jb51.net/article/214191.htm](https://www.jb51.net/article/214191.htm

使用C#代码进行

 public static void Pinjie()
        {
            Mat Left = Cv2.ImRead(System.Windows.Forms.Application.StartupPath + "\\ImageTest\\pingjie1.jpg", ImreadModes.AnyColor);
            Mat Right = Cv2.ImRead(System.Windows.Forms.Application.StartupPath + "\\ImageTest\\pingjie2.jpg", ImreadModes.AnyColor);
            var sift = SIFT.Create();
            var descriptors1 = new Mat();
            var descriptors2 = new Mat();
            sift.DetectAndCompute(Left, null, out var keypoints1, descriptors1);
            sift.DetectAndCompute(Right, null, out var keypoints2, descriptors2);
            var bf = new BFMatcher();
            var Matchs = bf.Match(descriptors1, descriptors2);
            if (Matchs.Length > 10)
            {
                //冒泡排序
                for (int i = 0; i < Matchs.Length - 1; i++)
                {
                    for (int j = 0; j < Matchs.Length - 1 - i; j++)
                    {
                        if (Matchs[j] > Matchs[j + 1])
                        {
                            var temp = Matchs[j];
                            Matchs[j] = Matchs[j + 1];
                            Matchs[j + 1] = temp;
                        }
                    }
                }
                List goodmatchs = new List();
                for (int i = 0; i < 50; i++)
                {
                    goodmatchs.Add(Matchs[i]);
                }
                Mat Dst_Images = new Mat();
                Cv2.DrawMatches(Left, keypoints1, Right, keypoints2, goodmatchs, Dst_Images, Scalar.Red, Scalar.Green, null, DrawMatchesFlags.NotDrawSinglePoints);
                Cv2.ImShow("goodmatchs", Dst_Images);

                //3特征点匹配
                List imagepoint1 = new List { };
                List imagepoint2 = new List { };
                for (int j = 0; j < goodmatchs.Count; j++)
                {
                    //查找特征点可连接处   变形
                    Point2d point2D = new Point2d(0, 0);
                    if (goodmatchs[j].TrainIdx > Matchs.Length)
                    {
                        continue;
                    }
                    point2D.X = Convert.ToDouble(keypoints1[goodmatchs[j].QueryIdx].Pt.X);
                    point2D.Y = Convert.ToDouble(keypoints1[goodmatchs[j].QueryIdx].Pt.Y);
                    imagepoint1.Add(point2D);
                    //查找特征点可连接处                          查找基准线
                    point2D.X = Convert.ToDouble(keypoints2[goodmatchs[j].TrainIdx].Pt.X);
                    point2D.Y = Convert.ToDouble(keypoints2[goodmatchs[j].TrainIdx].Pt.Y);
                    imagepoint2.Add(point2D);
                }
                //4 透视变换图形融合

                Mat homo = Cv2.FindHomography(imagepoint2, imagepoint1, HomographyMethods.Ransac);
                Mat imageTranForm = new Mat();
                Cv2.WarpPerspective(Right, imageTranForm, homo, new Size(Left.Cols + Left.Cols, Left.Rows));
                Cv2.ImShow("imageTranForm", imageTranForm);
                //创建拼接后的图,计算图的大小
                int dst_width = imageTranForm.Cols;//获取最右点为拼接图长度
                int dst_height = Left.Rows;
                Mat dst = new Mat(dst_height, dst_width, MatType.CV_8UC3);
                dst.SetTo(0);
                imageTranForm.CopyTo(new Mat(dst, (new Rect(0, 0, imageTranForm.Cols, imageTranForm.Rows))));
                Left.CopyTo(new Mat(dst, (new Rect(0, 0, Left.Cols, Left.Rows))));
                Cv2.ImShow("imageTranForm3", dst);
            }
            else
            {
                System.Windows.Forms.MessageBox.Show("特征点过少");
            }
            }

拼接效果图

图片不要从这里下载哦!

C#联合OpenCV进行图像拼接_第3张图片

C#联合OpenCV进行图像拼接_第4张图片

C#联合OpenCV进行图像拼接_第5张图片

C#联合OpenCV进行图像拼接_第6张图片

你可能感兴趣的:(OpenCVSharp,opencv,计算机视觉,人工智能,c#)