【scikit-learn】最简单的例子

# SciKit learn  Demo

# 1) A Basic Example
# ------------------------------------------------------------
'''  '''
from sklearn import neighbors, datasets, preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 1-1) data Load
iris = datasets.load_iris()
X, y = iris.data[:, :2], iris.target
# 1-2) train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
# 1-3) data preprocess
scaler = preprocessing.StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
# 1-4) setup Model
knn = neighbors.KNeighborsClassifier(n_neighbors=5)
# 1-5) Model training
knn.fit(X_train, y_train)
# 1-6) predict the test set using trained-Model
y_pred = knn.predict(X_test)
# 1-7) Score the Model
scoreOut = accuracy_score(y_test, y_pred);
print(scoreOut);
'''  '''
# ============================================

你可能感兴趣的:(python,scikit-learn,机器学习,sklearn)