文本分类:TextCNN(tensorflow2.0实现)

个人其他链接

github
blog

TextRNN

完整代码在github
TextCNN原始论文: Convolutional Neural Networks for Sentence Classification

TextCNN 的网络结构:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ca01TUSI-1588227288644)(/images/text_classification_images/TextCNN_network_structure.png)]

基于tensorflow2.0的keras实现

自定义model

这是tensorflow2.0推荐的写法,继承Model,使模型子类化

需要注意的几点:

  • 如果需要使用到其他Layer结构或者Sequential结构,需要在__init__()函数里赋值
  • 在model没有fit前,想调用summary函数时显示模型各层shape时,则需要自定义一个函数去build下模型,类似下面代码中的build_graph函数
  • summary()显示shape顺序,是按照__init__()里layer赋值的顺序
# -*- coding: utf-8 -*-
# @Time : 2020/4/20 14:44
# @Author : zdqzyx
# @File : textcnn.py
# @Software: PyCharm

import  tensorflow as tf
from tensorflow.keras.layers import Embedding, Conv1D, GlobalAveragePooling1D, Dense, Concatenate, GlobalMaxPooling1D
from tensorflow.keras import Model

class TextCNN(Model):

    def __init__(self,
                 maxlen,
                 max_features,
                 embedding_dims,
                 class_num,
                 kernel_sizes=[1,2,3],
                 kernel_regularizer=None,
                 last_activation='softmax'
                 ):
        '''
        :param maxlen: 文本最大长度
        :param max_features: 词典大小
        :param embedding_dims: embedding维度大小
        :param kernel_sizes: 滑动卷积窗口大小的list, eg: [1,2,3]
        :param kernel_regularizer: eg: tf.keras.regularizers.l2(0.001)
        :param class_num:
        :param last_activation:
        '''
        super(TextCNN, self).__init__()
        self.maxlen = maxlen
        self.kernel_sizes = kernel_sizes
        self.class_num = class_num
        self.embedding = Embedding(input_dim=max_features, output_dim=embedding_dims, input_length=maxlen)
        self.conv1s = []
        self.avgpools = []
        for kernel_size in kernel_sizes:
            self.conv1s.append(Conv1D(filters=128, kernel_size=kernel_size, activation='relu', kernel_regularizer=kernel_regularizer))
            self.avgpools.append(GlobalMaxPooling1D())
        self.classifier = Dense(class_num, activation=last_activation, )

    def call(self, inputs, training=None, mask=None):
        if len(inputs.get_shape()) != 2:
            raise ValueError('The rank of inputs of TextCNN must be 2, but now is %d' % len(inputs.get_shape()))
        if inputs.get_shape()[1] != self.maxlen:
            raise ValueError('The maxlen of inputs of TextCNN must be %d, but now is %d' % (self.maxlen, inputs.get_shape()[1]))

        emb = self.embedding(inputs)
        conv1s = []
        for i in range(len(self.kernel_sizes)):
            c = self.conv1s[i](emb) # (batch_size, maxlen-kernel_size+1, filters)
            c = self.avgpools[i](c) # # (batch_size, filters)
            conv1s.append(c)
        x = Concatenate()(conv1s) # (batch_size, len(self.kernel_sizes)*filters)
        output = self.classifier(x)
        return output

    def build_graph(self, input_shape):
        '''自定义函数,在调用model.summary()之前调用
        '''
        input_shape_nobatch = input_shape[1:]
        self.build(input_shape)
        inputs = tf.keras.Input(shape=input_shape_nobatch)
        if not hasattr(self, 'call'):
            raise AttributeError("User should define 'call' method in sub-class model!")
        _ = self.call(inputs)

main

构建模型helper,帮助构建模型,以及定义管理各种回调函数

  • 其中主要回调函数有三个:EarlyStopping, TensorBoard, ModelCheckpoint
# -*- coding: utf-8 -*-
# @Time : 2020/4/20 14:43
# @Author : zdqzyx
# @File : main.py
# @Software: PyCharm

# ===================== set random  ===========================
import numpy as np
import tensorflow as tf
import random as rn
np.random.seed(0)
rn.seed(0)
tf.random.set_seed(0)
# =============================================================

import os
from tensorflow.keras.callbacks import EarlyStopping, TensorBoard, ModelCheckpoint
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing.sequence import pad_sequences
from textcnn import TextCNN


def checkout_dir(dir_path, do_delete=False):
    import shutil
    if do_delete and os.path.exists(dir_path):
        shutil.rmtree(dir_path)
    if not os.path.exists(dir_path):
        print(dir_path, 'make dir ok')
        os.makedirs(dir_path)


class ModelHepler:
    def __init__(self, class_num, maxlen, max_features, embedding_dims, epochs, batch_size):
        self.class_num = class_num
        self.maxlen = maxlen
        self.max_features = max_features
        self.embedding_dims = embedding_dims
        self.epochs = epochs
        self.batch_size = batch_size
        self.callback_list = []
        print('Bulid Model...')
        self.create_model()

    def create_model(self):
        model = TextCNN(maxlen=self.maxlen,
                         max_features=self.max_features,
                         embedding_dims=self.embedding_dims,
                         class_num=self.class_num,
                         kernel_sizes=[2,3,5],
                         kernel_regularizer=None,
                         last_activation='softmax')
        model.compile(
            optimizer='adam',
            loss=tf.keras.losses.SparseCategoricalCrossentropy(),
            metrics=['accuracy'],
        )

        model.build_graph(input_shape=(None, maxlen))
        model.summary()
        self.model =  model

    def get_callback(self, use_early_stop=True, tensorboard_log_dir='logs\\TextCNN-epoch-5', checkpoint_path="save_model_dir\\cp-moel.ckpt"):
        callback_list = []
        if use_early_stop:
            # EarlyStopping
            early_stopping = EarlyStopping(monitor='val_accuracy', patience=7, mode='max')
            callback_list.append(early_stopping)
        if checkpoint_path is not None:
            # save model
            checkpoint_dir = os.path.dirname(checkpoint_path)
            checkout_dir(checkpoint_dir, do_delete=True)
            # 创建一个保存模型权重的回调
            cp_callback = ModelCheckpoint(filepath=checkpoint_path,
                                             monitor='val_accuracy',
                                             mode='max',
                                             save_best_only=True,
                                             save_weights_only=True,
                                             verbose=1,
                                             period=2,
                                             )
            callback_list.append(cp_callback)
        if tensorboard_log_dir is not None:
            # tensorboard --logdir logs/TextCNN-epoch-5
            checkout_dir(tensorboard_log_dir, do_delete=True)
            tensorboard_callback = TensorBoard(log_dir=tensorboard_log_dir, histogram_freq=1)
            callback_list.append(tensorboard_callback)
        self.callback_list = callback_list

    def fit(self, x_train, y_train, x_val, y_val):
        print('Train...')
        self.model.fit(x_train, y_train,
                  batch_size=self.batch_size,
                  epochs=self.epochs,
                  verbose=2,
                  callbacks=self.callback_list,
                  validation_data=(x_val, y_val))

    def load_model(self, checkpoint_path):
        checkpoint_dir = os.path.dirname((checkpoint_path))
        latest = tf.train.latest_checkpoint(checkpoint_dir)
        print('restore model name is : ', latest)
        # 创建一个新的模型实例
        # model = self.create_model()
        # 加载以前保存的权重
        self.model.load_weights(latest)

# ================  params =========================
class_num = 2
maxlen = 400
embedding_dims = 200
epochs = 10
batch_size = 128
max_features = 5000

MODEL_NAME = 'TextCNN-epoch-10-emb-200'

use_early_stop=True
tensorboard_log_dir = 'logs\\{}'.format(MODEL_NAME)
# checkpoint_path = "save_model_dir\\{}\\cp-{epoch:04d}.ckpt".format(MODEL_NAME, '')
checkpoint_path = 'save_model_dir\\'+MODEL_NAME+'\\cp-{epoch:04d}.ckpt'
#  ====================================================================

print('Loading data...')
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
print('Pad sequences (samples x time)...')
x_train = pad_sequences(x_train, maxlen=maxlen, padding='post')
x_test = pad_sequences(x_test, maxlen=maxlen, padding='post')
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)

model_hepler = ModelHepler(class_num=class_num,
                           maxlen=maxlen,
                           max_features=max_features,
                           embedding_dims=embedding_dims,
                           epochs=epochs,
                           batch_size=batch_size
                           )
model_hepler.get_callback(use_early_stop=use_early_stop, tensorboard_log_dir=tensorboard_log_dir, checkpoint_path=checkpoint_path)
model_hepler.fit(x_train=x_train, y_train=y_train, x_val=x_test, y_val=y_test)
print('Test...')
result = model_hepler.model.predict(x_test)
test_score = model_hepler.model.evaluate(x_test, y_test,
                            batch_size=batch_size)
print("test loss:", test_score[0], "test accuracy", test_score[1])



model_hepler = ModelHepler(class_num=class_num,
                           maxlen=maxlen,
                           max_features=max_features,
                           embedding_dims=embedding_dims,
                           epochs=epochs,
                           batch_size=batch_size
                           )
model_hepler.load_model(checkpoint_path=checkpoint_path)
# 重新评估模型
loss, acc = model_hepler.model.evaluate(x_test, y_test, verbose=2)
print("Restored model, accuracy: {:5.2f}%".format(100 * acc))

你可能感兴趣的:(nlp,tensorflow2.0)