稀疏编码matlab,sparsecoding 稀疏编码在图像分类中的实现,自己写的matlab程序,带demo 259万源代码下载- www.pudn.com...

文件名称: sparsecoding891ea1e7dab975064c6bfd22796603ae.gif下载  收藏√  [443d104427974206832dc4b12407db70.gif

 5  4  3  2  1 fb9128a58cbeaabbeb3718ed75079ccf.gif]

开发工具: matlab

文件大小: 9001 KB

上传时间: 2015-04-19

下载次数: 188

提 供 者: 曹恩泽

详细说明:稀疏编码在图像分类中的实现,自己写的matlab程序,带demo-sparsecoding in image classification

文件列表(点击判断是否您需要的文件,如果是垃圾请在下面评价投诉):

测试demo\Classification\codeSCW.m

........\..............\display_network.m

........\..............\generateImages.m

........\..............\getSparseCodingFeature.m

........\..............\Kits\kit\biggest.asv

........\..............\....\...\biggest.m

........\..............\....\...\distance.asv

........\..............\....\...\distance.m

........\..............\....\...\gradi.m

........\..............\....\...\kit01.asv

........\..............\....\...\localization.m

........\..............\....\...\mirror.m

........\..............\....\...\preproc.m

........\..............\....\...\stretch.m

........\..............\....\...\test.asv

........\..............\....\libsvm\libsvmpredict.mexw64

........\..............\....\......\libsvmtrain.mexw64

........\..............\....\minFunc\ArmijoBacktrack.m

........\..............\....\.......\autoGrad.m

........\..............\....\.......\autoHess.m

........\..............\....\.......\autoHv.m

........\..............\....\.......\autoTensor.m

........\..............\....\.......\callOutput.m

........\..............\....\.......\conjGrad.m

........\..............\....\.......\dampedUpdate.m

........\..............\....\.......\example_minFunc.m

........\..............\....\.......\example_minFunc_LR.m

........\..............\....\.......\isLegal.m

........\..............\....\.......\lbfgs.m

........\..............\....\.......\lbfgsC.c

........\..............\....\.......\lbfgsC.mexa64

........\..............\....\.......\lbfgsC.mexglx

........\..............\....\.......\lbfgsC.mexmac

........\..............\....\.......\lbfgsC.mexmaci

........\..............\....\.......\lbfgsC.mexmaci64

........\..............\....\.......\lbfgsC.mexw32

........\..............\....\.......\lbfgsC.mexw64

........\..............\....\.......\lbfgsUpdate.m

........\..............\....\.......\.ogistic\LogisticDiagPrecond.m

........\..............\....\.......\........\LogisticHv.m

........\..............\....\.......\........\LogisticLoss.m

........\..............\....\.......\........\mexutil.c

........\..............\....\.......\........\mexutil.h

........\..............\....\.......\........\mylogsumexp.m

........\..............\....\.......\........\repmatC.c

........\..............\....\.......\........\repmatC.dll

........\..............\....\.......\........\repmatC.mexglx

........\..............\....\.......\........\repmatC.mexmac

........\..............\....\.......\mchol.m

........\..............\....\.......\mcholC.c

........\..............\....\.......\mcholC.mexmaci64

........\..............\....\.......\mcholC.mexw32

........\..............\....\.......\mcholC.mexw64

........\..............\....\.......\mcholinc.m

........\..............\....\.......\minFunc.m

........\..............\....\.......\minFunc_processInputOptions.m

........\..............\....\.......\polyinterp.m

........\..............\....\.......\precondDiag.m

........\..............\....\.......\precondTriu.m

........\..............\....\.......\precondTriuDiag.m

........\..............\....\.......\rosenbrock.m

........\..............\....\.......\taylorModel.m

........\..............\....\.......\WolfeLineSearch.m

........\..............\loadPictureControllor.m

........\..............\localization.m

........\..............\model.mat

........\..............\myClassification.fig

........\..............\myClassification.m

........\..............\myModel.mat

........\..............\runClassification.m

........\..............\sample.m

........\..............\sparseCodingFeatureCost.m

........\..............\sparseCodingWeightCost.m

........\..............\trainSparseCoder.m

........\run.m

........\test\daqiao1-4-20131026071436-20131026075722-65388427-2245.png

........\....\daqiao1-4-20131026071436-20131026075722-65388427-4061.png

........\....\daqiao1-4-20131026071436-20131026075722-65388427-620.png

........\....\daqiao1-4-20131026071436-20131026075722-65388427-647.png

........\....\daqiao1-5-20131026093928-20131026102213-65388271-5108.png

........\....\daqiao1-5-20131026093928-20131026102213-65388271-6059.png

........\....\shengpingdasha-2-20131024041159-20131024082354-58950110-49404.png

........\....\shengpingdasha-2-20131024041159-20131024082354-58950110-65957.png

........\....\shengpingdasha-2-20131024041159-20131024082354-58950110-67527.png

........\....\shengpingdasha-3-20131024082358-20131024123551-58975429-207621.png

........\....\shengpingdasha-3-20131024082358-20131024123551-58975429-26023.png

........\....\shengpingdasha-3-20131024082358-20131024123551-58975429-61467.png

........\....\shengpingdasha-3-20131024082358-20131024123551-58975429-81009.png

........\....\shengpingdasha-4-20131024123557-20131024164756-58958908-35064.png

........\....\Untitled4.m

........\_运行run函数即可.txt

........\Classification\Kits\minFunc\logistic

........\..............\....\kit

........\..............\....\libsvm

........\..............\....\minFunc

........\..............\Kits

........\Classification

........\test

测试demo

输入关键字,在本站259万海量源码库中尽情搜索:

帮助

[Roberts.rar] - Roberts edge detection algorithm

[fuzzypredictive.rar] - 改进型的模糊预测控制算法matlab仿真程序,大家可以交流看一下

[Slider-Step.zip] - This code calculates dimensionless pressure, and load carrying capacity for a finite width slider step bearing

[stanford-deep-learning-matlab-code.rar] - stanford大学deep learning在线课程课后练习代码,我自己写的,可以参考一下。

[code.rar] - 稀疏编码的工具包,用matlab实现,数学上是求解l1 norm最小化

[SceneTextCNN_demo.tar.gz] - 端至端卷积神经网络的文字识别,代码演示包.

它包含我们的论文中使用的所有主要组成部分: kmeans无监督特征学习 + 卷积神经网络(CNN)

[sparse-variable-BSS.rar] - 基于稀疏变量的欠定盲源分离,可以解决源数大于传感器数的问题,即欠定盲源分离问题。

[eemd.zip] - 验模态分解(Empirical Mode Decomposition,简称EMD)是一种自适应信号分解方法,主要应用于非线性非平稳的信号。整体平均经验模态分解(Ensemble Empirical Mode Decomposition,简称EEMD)解决了EMD中出现的模态混合问题。

[Image-Classification.rar] - 本文实现了09年CVPR的文章Linear Spatial Pyramid Matching using Sparse Coding for Image Classification

[aaa.rar] - 关于遥感图像分类方面的程序源代码 有主成分分析,神经网络等方法

你可能感兴趣的:(稀疏编码matlab)