- 哨兵2号遥感影像解析全流程:步骤、算法与AI应用详解
zhz5214
AIGIS人工智能遥感aisentinel智能体
遥感影像解析是农业监测、环境评估等领域的重要技术手段。哨兵2号(Sentinel-2)凭借其高分辨率多光谱数据,成为遥感分析的热门数据源。本文将系统梳理哨兵2号影像解析的核心步骤、适用算法与软件工具,并探讨AI技术在该领域的创新应用。一、哨兵2号影像解析核心步骤1.数据获取与预处理数据下载哨兵2号数据可通过官方平台[CopernicusOpenAccessHub](https://scihub.c
- GEE数据集——Harmonized Landsat Sentinel-2 (HLS) 卫星sentinel-2哨兵-2(HLS)
此星光明
GEE数据集专栏sentinel遥感影像gee数据集nasaHLS-2
简介统一大地遥感卫星哨兵-2(HLS)项目通过虚拟卫星传感器群提供一致的地表反射率(SR)和大气层顶部亮度(TOA)数据。陆地成像仪(OLI)安装在美国宇航局/美国地质调查局的联合陆地卫星8号和陆地卫星9号上,而多光谱仪(MSI)则安装在欧洲的哥白尼哨兵-2A号和哨兵-2B号卫星上。通过综合测量,可以每2到3天以30米的空间分辨率对陆地进行全球观测。HLS项目使用一套算法来获得OLI和MSI的无缝
- Google Earth Engine——导入无云 Sentinel-2 图像和NDVI计算
此星光明
GEE教程训练sentinel人工智能geendvi归一化植被指数波段运算遥感
目录搜索和导入无云Sentinel-2图像Sentinel-2的背景打开GEE界面定义您感兴趣的领域查询Sentinel-2图像的存档过滤图像集合将图像添加到地图视图定义真彩色可视化参数探索影像定义假色可视化参数从波段组合中导出指数NDVI锻炼本实验的目的是介绍GoogleEarthEngine处理环境。在本练习结束时,您将能够搜索、查找和可视化范围广泛的遥感数据集。在第一个练习中,我们将重点关注
- 【图像去雾】基于多尺度Retinex实现图像去雾附Matlab代码
Matlab科研辅导帮
图像处理matlab开发语言
✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍1.引言雾霾天气严重影响了人们的生活和工作,对图像的清晰度也造成了极大的破坏。图像去雾技术旨在消除图像中的雾霾,恢复图像的真实色彩和细节,在交通监控、遥感成像、医学影像等领域具有广泛的应用价值。近年来,基于Retinex理论的图像去雾方法取得了
- 计算机视觉算法实战——图像配准(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.领域简介图像配准(ImageRegistration)是计算机视觉中的一个重要研究方向,旨在将两幅或多幅图像在空间上对齐。这些图像可能来自不同的传感器、不同的时间或不同的视角。图像配准在医学影像、遥感、自动驾驶、机器人导航等领域有着广泛的应用。其核心目标是通过几何变换(如平移、旋转
- VLRMBench :一个涵盖数学推理、幻觉理解、多图像理解等多种任务的视觉-语言奖励模型基准测试数据集
数据集
2025-03-10,由上海交通大学和小红书公司联合创建了VLRMBench数据集。是一个专门用于评估视觉-语言奖励模型的综合性基准测试,包含12,634个问题,覆盖数学推理、幻觉理解和多图像理解三大领域。为视觉-语言奖励模型的全面评估提供了新的标准,推动了该领域的发展。一、研究背景近年来,随着大语言模型和大视觉-语言模型的快速发展,它们在多模态任务中取得了显著进展,广泛应用于医学影像、遥感、自动
- 常用图像增强算法原理及 OpenCV C++ 实现
埃菲尔铁塔_CV算法
opencv计算机视觉人工智能c++算法机器学习
一、引言图像增强是数字图像处理中的一个重要分支,其目的是改善图像的视觉效果,突出图像中的重要信息,或者将图像转换为更适合人或机器分析处理的形式。在实际应用中,图像增强技术广泛应用于医学影像、遥感图像、安防监控等领域。本文将详细介绍常用的图像增强算法原理,并给出基于OpenCVC++库的实现代码。二、图像增强算法分类图像增强算法可以分为空间域增强和频域增强两大类。空间域增强是直接对图像的像素值进行操
- 【人工智能】农业工程与信息技术文献推荐
lisw05
人工智能农业信息技术机器人
李升伟整理1.农业物联网与智能化管理《农业物联网导论》作者:李道亮内容简介:本书系统介绍了农业物联网的基本概念、技术架构及其在农业生产中的应用,包括传感器网络、远程监控、智能决策支持系统等。《农业信息智能获取技术》作者:岳峻、傅泽田、高文内容简介:重点探讨了如何利用信息技术获取农业数据,包括遥感技术、无人机监测和传感器网络的应用。2.农业大数据与决策支持《农业大数据:理论与实践》作者:梅方权内容简
- 智能遥感新质生产力:ChatGPT、Python和OpenCV强强联合;空天地遥感数据分析的全流程;地面数据、无人机数据、卫星数据、多源数据等处理
小艳加油
DeepSeekChatGPT遥感遥感新质生产力ChatGPTOpenCV遥感数据处理
通过系统化的模块设计和丰富的实战案例,深入理解和掌握遥感数据的处理与计算。不仅涵盖了从零基础入门Python编程、OpenCV视觉处理的基础知识,还将借助ChatGPT智能支持,引导您掌握遥感影像识别和分析的进阶技术。更为重要的是,通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。层层递进、结构严谨,帮助您系统性掌握从数据预处理、图像增强、
- 【考研说】2025年研考上岸复试指南(地理学/测绘/遥感等)
小火苗GIS
考研
2024年4月,小火开设新的专题“考研说”,力求通过平台来尽可能帮助伙伴们去了解一些考研上岸的方法和经验;转眼间,又到了出分之后的复试阶段,这个阶段也至关重要。因为有的专业初试复试占比7:3,6:4,甚至5:5。面对复试这一部分,很多小伙伴会感到迷茫无措焦虑,主要包括以下方面。(1)不了解所报学校复试的专业课方面侧重点是哪些;(2)需要准备哪些方面的复试技巧,更加从容展现;(3)要不要考虑提前联系
- 矢量化的步骤
create_right
GIS
1、扫描地图矢量化是把栅格数据转换成矢量数据的处理过程。扫描是纸质地图矢量化的第一步,它将纸质地图转化为计算机可以识别的数字形式。2、图像预处理图像预处理主要是消除图像中无关的信息,恢复有用的真实信息。图像预处理一般包括去噪声、几何纠正、投影变换等。1、几何校正由于地图受介质或存放条件等因素的影响,地图的纸张容易发生变形,或者遥感影像本身就存在着几何变形。几何校正最常用的方法是仿射变换法。2、投影
- 顶配版SAM:由分割一切迈向感知一切
猛码Memmat
prompt人工智能计算机视觉语义分割prompt
文章目录0.前言1.论文地址1.1项目&代码1.2模型地址1.3Demo2.模型介绍2.1亮点2.2方法3.量化结果、可视化展示Reference0.前言现有的视觉分割基础模型,如SAM及其变体,集中优势在形状、边缘等初级定位感知,或依赖外部模型完成更高级的语义理解任务。然而,迈向更高效的视觉感知则需要在单个模型中实现全面的视觉理解,以助力于更广泛的应用场景,如自动驾驶、安防监控、遥感以及医学图像
- 文章精读篇——用于遥感小样本语义分割的可学习Prompt
LiXiang like coding吗
学习prompt人工智能
题目:LearnablePromptforFew-ShotSemanticSegmentationinRemoteSensingDomain会议:CVPR2024Workshop论文:10.48550/arXiv.2404.10307相关竞赛:https://codalab.lisn.upsaclay.fr/competitions/17568年份:2024任务背景小样本语义分割(Few-shot
- UNet:UNet在自然环境监测中的应用案例_2024-07-24_09-14-11.Tex
chenjj4003
游戏开发2深度学习计算机视觉人工智能性能优化游戏前端javascript
UNet:UNet在自然环境监测中的应用案例UNet模型概述UNet是一种广泛应用于图像分割任务的卷积神经网络模型,由OlafRonneberger、PhilippFischer和ThomasBrox在2015年提出。其设计初衷是为了在生物医学图像分析中进行细胞和组织的精确分割,但因其高效性和准确性,迅速在自然环境监测、遥感图像分析、卫星图像处理等领域找到了应用。架构原理UNet模型采用了一个编码
- 京区航天研究所 哪些比较好的研究所?
ctrigger
职场和发展
第一梯队:一院一部、战术武器部、10所、12所、研发部、空天部,五院501所(总体设计部)、502所、通导部、遥感部、钱室(所人均年薪35w-50w级别)第二梯队:一院14所、15所,二院未来实验室、二部、23所,三院三部、301所、水下总体部,四院四部、17所,五院总环部,九院772所,航天科技创新院(所人均年薪30w-45w级别)第三梯队:二院25所(2.5梯队)、706所、206所、空间公司
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
程序猿阿伟
生成对抗网络人工智能机器学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
人工智能深度学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- python:使用gdal和numpy进行遥感时间序列最大值合成
_养乐多_
python处理遥感数据pythonnumpy开发语言
作者:CSDN@_养乐多_本文将介绍使用python编程语言,进行遥感数据时间序列最大值合成的代码。代码中使用了numpy和gdal,通过numpy广播机制实现时间序列最大值合成,并以NDVI时间序列数据为例。代码方便易运行,逻辑简单,速度快。只需要输入单波段遥感数据,就可输出最大值合成影像。输入输出如下图所示,文章目录一、完整代码一、完整代码importosimportglobimportnum
- SPIE出版|2025年遥感与信息技术学术会议(RSIT2025)
Conf2022
云计算信息与通信
会议时间:2025年5月16-18日会议地址:中国·武汉会议官网:icrsit.com会议简介2025年遥感与信息技术国际会议(RSIT2025)将于2025年5月16日至18日在中国武汉举行。RSIT2025旨在汇聚领先的研究人员、工程师和行业专家,共同探讨遥感技术及其与尖端信息技术的融合最新进展。遥感技术是通过间接方式获取地球表面信息的科学,自诞生以来已经取得了显著的发展。利用卫星影像、雷达和
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- 探索TotalSegmentator:一款强大的全场景图像分割工具
计蕴斯Lowell
探索TotalSegmentator:一款强大的全场景图像分割工具项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目简介是一个开源的、基于深度学习的全场景图像分割框架。它由开发者Wasserth创建,旨在为医学影像分析、自动驾驶、遥感图像处理等多个领域提供高效且准确的像素级分类能力。该项目的亮点在于其模型的通用性和易用性,能够处理多种
- 遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
岁月如歌,青春不败
生态遥感目标检测cnntransformer遥感遥感影像
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。一:深度卷积网络知识1.深度学习在遥感图像识别中的范式和问题2.深度学习的历史发展历程3.机器学习,深度学习等任务的基本处理流程4.卷积神经网络的基本原理5
- 近地面无人机植被定量遥感与生理参数反演
岁月如歌,青春不败
生态遥感无人机遥感植被遥感生态科学生态模型植被科学农林
一:近十年近地面无人机植被遥感文献分析,传感器选择,观测方式及质量控制要点1.1.近十余年无人机植被遥感文献分析文献分析软件VOSviewer的使用无人机植被遥感的重点研究方向、研究机构、科学家家1.2.无人机遥感的特点及与卫星遥感的差异核心优势与四大基本特点无人机与卫星遥感影像的成像方式差异异1.3.无人机传感器类型、特点及选择消费级RGB相机的简要成像几何与光谱特点多光谱相机成像类型与核心问题
- 无人机遥感技术:从植被监测到生理参数反演的进阶之路
KY_chenzhao
无人机植被遥感参数反演
在当今的生态学和农林业研究中,无人机遥感技术已经成为获取植被信息的重要手段。它不仅能够快速覆盖大面积区域,还能提供高分辨率的多光谱和高光谱数据,为植被健康监测、生长状况评估和生理参数反演提供了强大的技术支持。今天,我们就来深入了解一下无人机遥感技术在植被定量监测中的应用。一、无人机遥感:为何备受青睐?无人机遥感技术结合了无人机的灵活性和遥感传感器的高精度,能够快速获取植被的多维度信息。与传统的卫星
- 一文读懂遥感技术在农险服务全流程的应用与价值
珈和info
遥感
农业保险作为分散农业风险、提高农业生产积极性、保障农民收入稳定的重要金融政策工具,其效能直接关系到农业生产的稳定与农村经济的繁荣。然而,传统农业保险业务在信息获取、风险评估等方面的局限性日益凸显。转型之际,科技手段应如何精准地介入到农险业务的发展中来?承保、理赔、风险评估等关键业务环节能否实现从重经验到重数据的转变?已实现商业化应用的遥感技术是否能突破局限,在成本、精度、算法等维度更贴合农险业务的
- 【案例教程】无人机遥感图像拼接及处理
weixin_贾
GIS无人机遥感无人机图像拼接多光谱Photoscan软件
无人机遥感图像采集流程:无人机遥感监测介绍无人机航线规划设计无人机飞行软件操作无人机航拍一般过程无人机遥感图像拼接软件操作:Photoscan软件介绍软件基本操作与实践遥感图像拼接的一般流程遥感图像分组拼接与点云分类无人机遥感图像拼接典型案例:基于无人机航拍的单体三维建模案例基于普通相机拍摄的单体三维建模案例基于无人机航拍的正射影像制图案例利用批处理实现无人机航拍制图案例利用地面控制点提高制图精度
- 遥感影像建筑物提取
V搜xhliang0246
人工智能计算机视觉深度学习python开发语言
遥感影像建筑物提取是一项重要的地理信息处理任务,它在城市规划、环境监测、人口估算和土地覆盖制图等领域具有广泛的应用价值。以下是对遥感影像建筑物提取的详细解析:一、数据采集数据采集是建筑物提取的基础步骤。应选择具有高空间分辨率和多光谱信息的遥感影像,以确保提取的准确性。常用的遥感影像数据包括航空影像和卫星影像:航空影像:拍摄于飞机上,具有较高的空间分辨率,适用于小区域的建筑物提取。卫星影像:拍摄于卫
- 【语义分割专题文章】
BoostingIsm
Segmentationpython
本栏聚焦在语义分割的相关算法,专栏内文章的代码均已实现。一、数据篇【遥感】【道路】篇:【语义分割】【专题系列】一、MassachusettsRoadsDataset马萨诸塞州道路数据集获取二、CNN篇Unet(2015):【语义分割】【专题系列】二、Unet语义分割代码实战PSPNet(2017):【语义分割】【专题系列】三、PSPNet语义分割代码实战Linknet(2017)FPN(Featu
- 无人机遥感在农林信息提取中的实现方法与GIS融合制图教程
岁月如歌,青春不败
生态遥感无人机农业科学林业科学GIS制图遥感生态学
遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的农情数据。数据具有面状、实时、非接触、无伤检测等显著优势,是智慧农业必须采用的重要技术之一。一:综合态势分析1.1研究区及作物品种分析(1)形态指标分析(2)生理生化指标分析(3)胁迫指标分析(4)产量指标分析(5)综合分析1.2无人机平台分析:析目前常用于农林行业的无人机平台。1.3无人机机载传感器分析:析目前常用于农林行业
- 无人机图像拼接数据在GIS中的处理与分析、可视化与制图;无人机航拍;无人机生态环境监测、图像处理与GIS数据分析
WangYan2022
遥感生态无人机图像处理数据分析ArcGIS生态环境监测
ArcGIS作为地理信息系统领域最主流的GIS平台软件,空间数据处理和分析功能强大,十分适用于地表空间监测数据的读写、管理、分析与可视化。本教程融合无人机生态环境监测技术和ArcGIS数据分析技术,通过具体案例分析与软件操作实践,详细介绍包括无人机多源遥感影像数据采集(可见光、多光谱、激光雷达等)、影像数据拼接、空间数据编辑、空间数据分析、空间数据专题制图等流程的一条完整作业“流水线”,期望能够为
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开