Opencv-(35)轮廓匹配

轮廓匹配

基本原理

根据图形的图像几何矩和Hu矩计算图像的轮廓是否匹配

Opencv-(35)轮廓匹配_第1张图片Opencv-(35)轮廓匹配_第2张图片

代码演示

#include
#include
using namespace cv;
using namespace std;
void contour_info(Mat& image, vector<vector<Point>>& contours);
int main() {
	Mat src1 = imread("D:/ps/te.png");
	Mat src2 = imread("D:/ps/te.png");
	if (src1.empty()|| src2.empty())
	{
		cout << "could not find the image";
		return -1;
	}
	namedWindow("input", WINDOW_FREERATIO);
	imshow("input1", src1);
	imshow("input2", src2);

	
	vector<vector<Point>>contours1;
	vector<vector<Point>>contours2;
	contour_info(src1, contours1);
	contour_info(src2, contours2);
	Moments mm2 = moments(contours2[0]);
	Mat hu2;
	HuMoments(mm2, hu2);

	for (size_t t = 0; t < contours1.size(); t++) {
		Moments mm = moments(contours2[t]);
		Mat hu;
		HuMoments(mm, hu);
		
		double dist = matchShapes(hu, hu2,CONTOURS_MATCH_I1, 0);
		if(dist < 1.0){
			printf(" matched distance valu: %.2f\n", dist);
		drawContours(src1, contours1, t, Scalar(0, 0, 255), 2, 8);
	}

	}



	//drawContours(src, contours, -1, Scalar(0, 0, 255), 2, 8);
	imshow("find contours demo", src1);
	waitKey(0);
	destroyAllWindows();
	return 0;
}




void contour_info(Mat& image, vector<vector<Point>>& contours) {

	//二值化
	Mat dst;
	GaussianBlur(image, image, Size(3, 3), 0);
	Mat gray, binary;
	cvtColor(image, gray, COLOR_BGR2GRAY);
	threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);

	//轮廓发现
	imshow("binary", binary);
	//vector>contours;
	vector<Vec4i>hierachy;
	findContours(binary, contours, hierachy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point());

}

Opencv-(35)轮廓匹配_第3张图片

你可能感兴趣的:(opencv,VS,笔记,opencv,计算机视觉,人工智能)