# 在此首先感谢任佬的无私分享,有兴趣的同学可以去任佬的知乎进行学习
从零开始做自动驾驶定位
对应任佬代码tag4.0,后续会对代码不断的改进,任佬说一套好的代码要从最简单的开始,所以我准备一步一步进行优化,也是对不怎么熟练的C++学习。
首先学习CMakeLists,这部分包含了整体框架的结构,是学习工程很好的一个切入点
cmake_minimum_required(VERSION 2.8.3)
project(lidar_localization)
#Release:发布版本进行优化 Debug:调试版本不进行优化
SET(CMAKE_BUILD_TYPE "Release")
SET(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} -O3 -Wall")
#使用C++11
#为当前路径和下层路径的目标增加编译器命令行选项
add_compile_options(-std=c++11)
add_definitions(-std=c++11)
#发现依赖包
find_package(catkin REQUIRED COMPONENTS
roscpp
rospy
std_msgs
pcl_ros
geometry_msgs
tf
eigen_conversions
)
#将所有的依赖进行打包,修改后也随着变化
set(ALL_TARGET_LIBRARIES "")
#将文件放入cmake文件下,方便管理,在cmake文件中在去找对应的包
include(cmake/glog.cmake)
include(cmake/PCL.cmake)
include(cmake/eigen.cmake)
include(cmake/geographic.cmake)
include_directories(include ${catkin_INCLUDE_DIRS})
include(cmake/global_defination.cmake)
catkin_package()
#简化代码
#整合所有的cpp文件 到 ALL_SRCS
file(GLOB_RECURSE ALL_SRCS "*.cpp")
#整合所有的src/*_node.cpp文件 到 NODE_SRCS
file(GLOB_RECURSE NODE_SRCS "src/*_node.cpp")
#整合所有的third_party/*.cpp文件 到 THIRD_PARTY_SRCS
file(GLOB_RECURSE THIRD_PARTY_SRCS "third_party/*.cpp")
#在 ALL_SRCS 剔除 NODE_SRCS THIRD_PARTY_SRCS 所包含的内容
list(REMOVE_ITEM ALL_SRCS ${NODE_SRCS})
list(REMOVE_ITEM ALL_SRCS ${THIRD_PARTY_SRCS})
#最终需要编译的就是两个运行节点
#加入上面打包好的依赖,很方便使用
add_executable(test_frame_node src/test_frame_node.cpp ${ALL_SRCS})
target_link_libraries(test_frame_node ${catkin_LIBRARIES} ${ALL_TARGET_LIBRARIES})
add_executable(front_end_node src/front_end_node.cpp ${ALL_SRCS})
target_link_libraries(front_end_node ${catkin_LIBRARIES} ${ALL_TARGET_LIBRARIES})
根据CMakeLists.txt的说明,主要运行节点为front_end_node.cpp,下面我们一起看看
/*
* @Description:
* @Author: Ren Qian
* @Date: 2020-02-05 02:56:27
*/
#include
#include
#include "glog/logging.h"
#include "lidar_localization/global_defination/global_defination.h"
#include "lidar_localization/subscriber/cloud_subscriber.hpp"
#include "lidar_localization/subscriber/imu_subscriber.hpp"
#include "lidar_localization/subscriber/gnss_subscriber.hpp"
#include "lidar_localization/tf_listener/tf_listener.hpp"
#include "lidar_localization/publisher/cloud_publisher.hpp"
#include "lidar_localization/publisher/odometry_publisher.hpp"
#include "lidar_localization/front_end/front_end.hpp"
using namespace lidar_localization;
int main(int argc, char *argv[]) {
//初始化日志函数 接受一个char*类型的参数也就是argv[0]
google::InitGoogleLogging(argv[0]);
//FLAGS_log_dir设置日志输出目录
FLAGS_log_dir = WORK_SPACE_PATH + "/Log";
//是否将所有日志输出到文件 这里选择是
FLAGS_alsologtostderr = 1;
//初始化ros节点 与 句柄
ros::init(argc, argv, "front_end_node");
ros::NodeHandle nh;
//接收点云、imu、gnss、雷达与imu之间的标定信息话题
//make_shared: make_shared使用过程就是调用CloudSubscriber中的模板函数推断出创建类型
//shared_ptr 对象可以与相同的指针相关联,并在内部使用引用计数机制 计数为0是自动释放内存
//std::make_shared 一次性为int对象和用于引用计数的数据都分配了内存,而new操作符只是为int分配了内存。
std::shared_ptr cloud_sub_ptr = std::make_shared(nh, "/kitti/velo/pointcloud", 100000);
std::shared_ptr imu_sub_ptr = std::make_shared(nh, "/kitti/oxts/imu", 1000000);
std::shared_ptr gnss_sub_ptr = std::make_shared(nh, "/kitti/oxts/gps/fix", 1000000);
std::shared_ptr lidar_to_imu_ptr = std::make_shared(nh, "velo_link", "imu_link");
//发布当前扫描、局部地图、全局地图、激光里程计、guss里程计话题
std::shared_ptr cloud_pub_ptr = std::make_shared(nh, "current_scan", 100, "/map");
std::shared_ptr local_map_pub_ptr = std::make_shared(nh, "local_map", 100, "/map");
std::shared_ptr global_map_pub_ptr = std::make_shared(nh, "global_map", 100, "/map");
std::shared_ptr laser_odom_pub_ptr = std::make_shared(nh, "laser_odom", "map", "lidar", 100);
std::shared_ptr gnss_pub_ptr = std::make_shared(nh, "gnss", "map", "lidar", 100);
std::shared_ptr front_end_ptr = std::make_shared();
//定义用来保存点云 imu gnss 当前时刻的信息容器
//CloudData为保存点云的类
std::deque cloud_data_buff;
std::deque imu_data_buff;
std::deque gnss_data_buff;
//初始化lidar与imu坐标系之间的转化关系
Eigen::Matrix4f lidar_to_imu = Eigen::Matrix4f::Identity();
bool transform_received = false;
bool gnss_origin_position_inited = false;
bool front_end_pose_inited = false;
//定义类指针 用来存储局部地图 全局地图 当前帧扫描点云
CloudData::CLOUD_PTR local_map_ptr(new CloudData::CLOUD());
CloudData::CLOUD_PTR global_map_ptr(new CloudData::CLOUD());
CloudData::CLOUD_PTR current_scan_ptr(new CloudData::CLOUD());
double run_time = 0.0;
double init_time = 0.0;
bool time_inited = false;
bool has_global_map_published = false;
//设置循环频率100hz
ros::Rate rate(100);
while (ros::ok()) {
ros::spinOnce();
//把新点云、imu、gnss数据保存到cloud_data_buff imu_data_buff gnss_data_buff
cloud_sub_ptr->ParseData(cloud_data_buff);
imu_sub_ptr->ParseData(imu_data_buff);
gnss_sub_ptr->ParseData(gnss_data_buff);
//导入lidar与imu位姿关系
if (!transform_received) {
//以旋转矩阵的形式表示出
if (lidar_to_imu_ptr->LookupData(lidar_to_imu)) {
transform_received = true;
}
} else {
while (cloud_data_buff.size() > 0 && imu_data_buff.size() > 0 && gnss_data_buff.size() > 0) {
//提取第一个数据
CloudData cloud_data = cloud_data_buff.front();
IMUData imu_data = imu_data_buff.front();
GNSSData gnss_data = gnss_data_buff.front();
//如果时间没有初始化,则设置第一个点云数据时间为初始时间
//已经初始了则计算点云与初始时间的差值
if (!time_inited) {
time_inited = true;
init_time = cloud_data.time;
} else {
run_time = cloud_data.time - init_time;
}
//保证点云数据与imu、gnss数据时间同步
double d_time = cloud_data.time - imu_data.time;
if (d_time < -0.05) {
cloud_data_buff.pop_front();
} else if (d_time > 0.05) {
imu_data_buff.pop_front();
gnss_data_buff.pop_front();
} else {
cloud_data_buff.pop_front();
imu_data_buff.pop_front();
gnss_data_buff.pop_front();
Eigen::Matrix4f odometry_matrix = Eigen::Matrix4f::Identity();
//初始化gnss数据
if (!gnss_origin_position_inited) {
gnss_data.InitOriginPosition();
gnss_origin_position_inited = true;
}
//更新gnss数据 转化到imu坐标系下,并发布
gnss_data.UpdateXYZ();
odometry_matrix(0,3) = gnss_data.local_E;
odometry_matrix(1,3) = gnss_data.local_N;
odometry_matrix(2,3) = gnss_data.local_U;
odometry_matrix.block<3,3>(0,0) = imu_data.GetOrientationMatrix();
odometry_matrix *= lidar_to_imu;
gnss_pub_ptr->Publish(odometry_matrix);
//如果位姿没有初始化,使用gnss第一帧位姿进行初始化
if (!front_end_pose_inited) {
front_end_pose_inited = true;
front_end_ptr->SetInitPose(odometry_matrix);
}
//用里程计去预测位姿
front_end_ptr->SetPredictPose(odometry_matrix);
//更新点云信息并发布
Eigen::Matrix4f laser_matrix = front_end_ptr->Update(cloud_data);
laser_odom_pub_ptr->Publish(laser_matrix);
front_end_ptr->GetCurrentScan(current_scan_ptr);
cloud_pub_ptr->Publish(current_scan_ptr);
//发布局部地图
if (front_end_ptr->GetNewLocalMap(local_map_ptr))
local_map_pub_ptr->Publish(local_map_ptr);
}
//时间超过460秒,则发布一次最新的全局地图
if (run_time > 460.0 && !has_global_map_published) {
if (front_end_ptr->GetNewGlobalMap(global_map_ptr)) {
global_map_pub_ptr->Publish(global_map_ptr);
has_global_map_published = true;
}
}
}
}
rate.sleep();
}
return 0;
}
各个部分都模块化是很容易阅读和扩展的一种方式,下面以点云数据为例
namespace lidar_localization {
class CloudData {
public:
using POINT = pcl::PointXYZ;
//多个点组成点云容器
using CLOUD = pcl::PointCloud;
//指向点云容器的指针
using CLOUD_PTR = CLOUD::Ptr;
public:
//cloud_ptr(new CLOUD()) 等价于 cloud_ptr = new CLOUD 给cloud_ptr 分配内存
//cloud_ptr后面就是指向点云容器的指针 cloud_ptr是后面用到的
CloudData()
:cloud_ptr(new CLOUD()) {
}
public:
double time = 0.0;
CLOUD_PTR cloud_ptr;
};
}
namespace lidar_localization {
CloudPublisher::CloudPublisher(ros::NodeHandle& nh,
std::string topic_name,
size_t buff_size,
std::string frame_id)
//用nh_代替nh,frame_id_代替frame_id
:nh_(nh), frame_id_(frame_id) {
//发布者格式
publisher_ = nh_.advertise(topic_name, buff_size);
}
void CloudPublisher::Publish(CloudData::CLOUD_PTR cloud_ptr_input) {
sensor_msgs::PointCloud2Ptr cloud_ptr_output(new sensor_msgs::PointCloud2());
//转化成ros格式进行发布
pcl::toROSMsg(*cloud_ptr_input, *cloud_ptr_output);
//提取时间辍,ros::Time::now()随当前时间变化
cloud_ptr_output->header.stamp = ros::Time::now();
cloud_ptr_output->header.frame_id = frame_id_;
publisher_.publish(*cloud_ptr_output);
}
} // namespace data_output
namespace lidar_localization {
//订阅者接受数据函数
CloudSubscriber::CloudSubscriber(ros::NodeHandle& nh, std::string topic_name, size_t buff_size)
:nh_(nh) {
subscriber_ = nh_.subscribe(topic_name, buff_size, &CloudSubscriber::msg_callback, this);
}
//回调函数接受点云数据,并把点云从ros格式转化为pcl格式,然后存储在new_cloud_data_中
void CloudSubscriber::msg_callback(const sensor_msgs::PointCloud2::ConstPtr& cloud_msg_ptr) {
//cloud_data类 包含时间信息和点云容器
CloudData cloud_data;
cloud_data.time = cloud_msg_ptr->header.stamp.toSec();
pcl::fromROSMsg(*cloud_msg_ptr, *(cloud_data.cloud_ptr));
new_cloud_data_.push_back(cloud_data);
}
//用于数据的传输,把新来的点云数据保存到当前点云数据中
//cloud_data_buff由很多CloudData类组成的容器
void CloudSubscriber::ParseData(std::deque& cloud_data_buff) {
if (new_cloud_data_.size() > 0) {
//新来的点云被插入在尾部
cloud_data_buff.insert(cloud_data_buff.end(), new_cloud_data_.begin(), new_cloud_data_.end());
//清空接受新点云的内存
new_cloud_data_.clear();
}
}
} // namespace data_input
主要作用就是把经纬高坐标系转化为东北天ENU坐标系
namespace lidar_localization {
class GNSSData {
public:
double time = 0.0;
//经度 维度 高度
double longitude = 0.0;
double latitude = 0.0;
double altitude = 0.0;
//RTK获得的经纬高坐标要转换为东北天坐标,才能用于局部的导航和定位
//东北天(ENU)坐标系
//U轴垂直于过原点的参 考椭球面,指向天顶;N与U轴相互垂直,N轴指向为参考椭球短半轴;E 轴完成左手系。
double local_E = 0.0;
double local_N = 0.0;
double local_U = 0.0;
int status = 0;
int service = 0;
private:
static GeographicLib::LocalCartesian geo_converter;
static bool origin_position_inited;
public:
void InitOriginPosition();
void UpdateXYZ();
};
}
//静态成员变量必须在类外初始化
bool lidar_localization::GNSSData::origin_position_inited = false;
//经纬度原点初始化
GeographicLib::LocalCartesian lidar_localization::GNSSData::geo_converter;
namespace lidar_localization {
void GNSSData::InitOriginPosition() {
//经纬度原点初始化
//Reset 函数的作用是重置原点,LocalCartesian构造函数是默认在(0,0,0)也就是地心
geo_converter.Reset(latitude, longitude, altitude);
origin_position_inited = true;
}
void GNSSData::UpdateXYZ() {
if (!origin_position_inited) {
LOG(WARNING) << "GeoConverter has not set origin position";
}
//经纬度转ENU
//Forward (lat, lon, alt, x, y, z)函数就是把经纬高转换为ENU,前三个传入,后三个传出
geo_converter.Forward(latitude, longitude, altitude, local_E, local_N, local_U);
}
}
namespace lidar_localization {
class IMUData {
public:
//线速度
struct LinearAcceleration {
double x = 0.0;
double y = 0.0;
double z = 0.0;
};
//角速度
struct AngularVelocity {
double x = 0.0;
double y = 0.0;
double z = 0.0;
};
//角度
struct Orientation {
double x = 0.0;
double y = 0.0;
double z = 0.0;
double w = 0.0;
};
double time = 0.0;
LinearAcceleration linear_acceleration;
AngularVelocity angular_velocity;
Orientation orientation;
public:
// 把四元数转换成旋转矩阵送出去
Eigen::Matrix3f GetOrientationMatrix() {
Eigen::Quaterniond q(orientation.w, orientation.x, orientation.y, orientation.z);
Eigen::Matrix3f matrix = q.matrix().cast();
return matrix;
}
};
}
namespace lidar_localization {
TFListener::TFListener(ros::NodeHandle& nh, std::string base_frame_id, std::string child_frame_id)
:nh_(nh), base_frame_id_(base_frame_id), child_frame_id_(child_frame_id) {
}
bool TFListener::LookupData(Eigen::Matrix4f& transform_matrix) {
try {
tf::StampedTransform transform;
//ros::Time(0):查找最近两个时间坐标,计算坐标关系
//child_frame_id_相对于base_frame_id_的坐标关系
listener_.lookupTransform(base_frame_id_, child_frame_id_, ros::Time(0), transform);
//姿态关系转化成4x4旋转矩阵
TransformToMatrix(transform, transform_matrix);
return true;
} catch (tf::TransformException &ex) {
return false;
}
}
bool TFListener::TransformToMatrix(const tf::StampedTransform& transform, Eigen::Matrix4f& transform_matrix) {
//定义平移变量
Eigen::Translation3f tl_btol(transform.getOrigin().getX(), transform.getOrigin().getY(), transform.getOrigin().getZ());
double roll, pitch, yaw;
//定义旋转变量
tf::Matrix3x3(transform.getRotation()).getEulerYPR(yaw, pitch, roll);
Eigen::AngleAxisf rot_x_btol(roll, Eigen::Vector3f::UnitX());
Eigen::AngleAxisf rot_y_btol(pitch, Eigen::Vector3f::UnitY());
Eigen::AngleAxisf rot_z_btol(yaw, Eigen::Vector3f::UnitZ());
// 此矩阵为 child_frame_id 到 base_frame_id 的转换矩阵 得到4x4旋转矩阵
transform_matrix = (tl_btol * rot_z_btol * rot_y_btol * rot_x_btol).matrix();
return true;
}
}