- 基于Transformer实现机器翻译
yyyyurina.
transformer机器翻译深度学习
目录一、前言1.1什么是Transformer?1.2Transfomer的基本结构1.2Transformer的重要组成部分1.2.1位置编码(PositionalEncode)1.2.2自注意力机制(Self-Attention)1.2.3多头注意力(Multi-HeadAttention)1.2.4位置感知前馈层(Position-wiseFFN)1.2.5残差连接与层归一化二、AutoDL
- 入选 ICML 2025!哈佛医学院等推出全球首个 HIE 领域临床思维图谱模型,神经认知结果预测任务上性能提升 15%
hyperai
在人工智能技术突飞猛进的当下,大型视觉-语言模型(LVLMs)正以惊人的速度重塑多个领域的认知边界。在自然图像与视频分析领域,这类模型依托先进的神经网络架构、海量标注数据集与强大算力支持,已能精准完成物体识别、场景解析等高阶任务。而在自然语言处理领域,LVLMs通过对TB级文本语料的学习,在机器翻译、文本摘要、情感分析等任务上达到专业级水准,其生成的学术摘要甚至能精准提炼医学文献的核心结论。然而当
- NLP市场规模将破千千亿,哪些岗位会成为新风口?
duolapig
人工智能
近年来,自然语言处理(NLP)技术在全球范围内掀起了一场“语言革命”。从智能客服到机器翻译,从情感分析到内容生成,NLP正以惊人的速度重塑人类与机器的交互方式。艾媒咨询数据显示,2023年中国NLP市场规模已达660亿元,预计2027年将突破千亿大关。这一数字背后,不仅是技术迭代的加速,更是一场深刻的人才需求变革。在AI大模型浪潮的推动下,新的职业风口正在形成,而这场变革的核心逻辑,是技术与产业融
- RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
- 机器翻译综述
唐风绸繆
自然语言处理机器翻译人工智能自然语言处理
机器翻译综述-CSDN博客领域词性标注-CSDN博客一、研究意义机器翻译是自然语言处理和人工智能的重要研究领域,研究如何利用计算机自动地实现不同语言之间的相互转换,也是互联网上常用的服务之一。谷歌翻译、百度翻译和微软必应翻译都提供多种语言之间的在线翻译服务。尽管机器翻译与专业翻译人员在翻译质量上仍存在较大差距,但在一些对翻译质量要求不高的场景中,或在特定的翻译任务中,机器翻译在翻译速度上具有明显优
- 自然语言处理之文本分类:Transformer:文本分类数据集分析
zhubeibei168
自然语言处理自然语言处理分类transformer数据挖掘人工智能支持向量机
自然语言处理之文本分类:Transformer:文本分类数据集分析自然语言处理基础NLP概述自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,专注于使计算机能够理解、解释和生成人类语言。NLP技术广泛应用于文本分类、情感分析、机器翻译、问答系统、语音识别等场景。其核心挑战在于理解语言的复杂性和多义性,以及处理大
- 【深度学习】循环神经网络(RNN):序列建模的奠基者
白熊188
深度学习深度学习rnn人工智能
循环神经网络(RNN):序列建模的奠基者一、算法背景:序列数据的挑战1.1传统神经网络的局限1.2序列数据特性二、算法理论:RNN的核心架构2.1基本RNN结构2.2时间展开原理2.3长短期记忆网络(LSTM)2.4门控循环单元(GRU)三、模型评估:序列建模的评判标准3.1通用评估指标3.2性能对比(PennTreebank数据集)四、应用案例:改变人机交互方式4.1机器翻译(Seq2Seq架构
- 自然语言处理分类
要奋斗呀
自然语言处理
NLP学习Nlp基本分类NLP领域的任务分为两个类别:第一类是人工智能NLP。包括词性标注,分词,语法解析,语言模型,信息检索,信息抽取,语义表示,文本分类。这些任务发展较为成熟,各种相关工作的主要目的是提高当前模型的性能。第二类是人工智障NLP。包括机器翻译,对话系统,问答系统。目前模型的性能尚不尽如人意,有些任务上甚至没有足够多的,真正有影响力的工作。一、文本分类--情感分类1.定义情感分类是
- NLP-文本表示
Carrie_Lei
NLP自然语言处理人工智能
文本表示(TextRepresentation)是自然语言处理(NLP)中的一个关键步骤,它将文本数据转换为机器学习模型可以理解的格式。不同的文本表示方法有助于不同的任务,如文本分类、情感分析、机器翻译等。以下是常见的文本表示方法及其简介:1.词袋模型(BagofWords,BoW)定义:将文本表示为词汇表中所有词的出现频次。忽略词的顺序和语法结构。优点:简单易懂,适用于基础文本分类任务。缺点:高
- BLEU及一些其它的机器翻译评估指标
道风杰韵
VLNM机器翻译人工智能自然语言处理
BLEU(BilingualEvaluationUnderstudy)即双语互译质量评估辅助工具,是一种在机器翻译任务中广泛使用的评估指标。一、原理基于n-gram的匹配BLEU主要基于n-gram(n元语法)的概念。n-gram是指文本中连续的n个单词的序列。例如,在句子“Thecatsatonthemat”中,1-gram(一元语法)有“the”“cat”“sat”“on”“the”“mat”
- 基于Transformer实现机器翻译(日译中)
觉今是昨非
transformer机器翻译深度学习
一、引言在自然语言处理(NLP)领域,机器翻译是一项重要且具有挑战性的任务。近年来,基于Transformer的模型在机器翻译任务中表现出色。本文将详细介绍如何使用PyTorch、Torchtext、SentencePiece以及JupyterNotebook构建一个日语到中文的机器翻译模型。二、原理解释1.Transformer模型的基础概念Transformer模型是由Vaswani等人在20
- 机器翻译模型及评估指标总结
J心流
机器翻译机器翻译人工智能自然语言处理
文章目录0前言1主流开源模型2.1NLLB2.2MMS2.3Seamless2.4Fairseq2.5MarianNMT2.6OpenNMT2.7mRASP2.8T5、mT5、UMT52.9Tensor2Tensor2.10NeMo2评估指标及实现代码2.1BLEU2.2ROUGE2.3METEOR3模型部署总结3.1移动端3.1.1CTranslate23.1.2TensorflowTflite
- Pointer Network
D11PMINDER
deeplearning人工智能自然语言处理深度学习
通俗易懂讲解:PointerNetwork(指针网络)你提到PointerNetwork(指针网络),我们结合非自回归序列生成(NAT)的背景来讲解它的原理、操作和作用。PointerNetwork是一种特殊的神经网络,专门用来解决序列生成中“选择性输出”的问题,比如机器翻译、排序任务等。我们用简单易懂的方式一步步拆解!1.背景:什么是PointerNetwork?PointerNetwork是一
- 机器翻译Task2笔记
triumph159
机器翻译笔记人工智能
模型的概念RNN模型在每个时间步接收一个字的输入,生成隐藏状态和输出,再将隐藏状态与下一个字输入到模型中,重复此过程。GRU(门控循环单元)是RNN的变体,能够有效捕捉长序列语义关联,缓解梯度消失或爆炸现象,其核心结构由更新门和重置门两部分组成。对于数据处理的思路记住我们正常的神经网络是无法直接识别中文或者英文的字符串输入的。所以这一步我们的目标只有一个,那就是将数据变成神经网络可以识别到的数据类
- 机器翻译模型笔记
D11PMINDER
deeplearning机器翻译笔记人工智能
机器翻译学习笔记(简体中文)1.任务概述目标:将英文句子翻译成简体中文。示例:输入:Tomisastudent.输出:汤姆是一个学生。框架:Seq2Seq(序列到序列)模型。2.数据预处理2.1下载数据数据集:TED2020(英文-简体中文对齐的平行语料)。代码:#下载TED2020数据集的压缩文件#-wget命令用于从指定URL下载文件#--O选项指定下载文件的保存路径和名称#-目的:获取训练所
- bitbake手册
power1952
linux
前言本文是bitbake官方文档的翻译。https://docs.yoctoproject.org/bitbake/2.6/index.html一些地方我觉得没必要翻译,以省略号代替。一部分内容用了机器翻译,遇到无法理解处,请参考原始文档。在一些地方插入了我个人的理解。标有“注”的内容是我加的。1Overview见https://docs.yoctoproject.org/bitbake/2.6/
- 模块化设计:构建可扩展的LLM应用架构
AI天才研究院
ChatGPT计算javapythonjavascriptkotlingolang架构人工智能
引言模块化设计与LLM应用架构概述在当今信息技术飞速发展的时代,人工智能(AI)技术的进步尤为引人注目。其中,大型语言模型(LLM,LargeLanguageModel)的应用极大地改变了自然语言处理(NLP,NaturalLanguageProcessing)的格局。LLM的应用不仅仅局限于文本生成、问答系统,还在智能客服、机器翻译、内容审核等领域展现出了强大的能力。然而,随着LLM的规模不断扩
- EMNLP 2017 北京论文报告会笔记
ljtyxl
NLP
16号在北京举办的,邀请了国内部分被录用论文的作者来报告研究成果,整场报告会分为文本摘要及情感分析、机器翻译、信息抽取及自动问答、文本分析及表示学习四个部分。感觉上次的CCF-GAIR参会笔记写的像流水账,这次换一种方式做笔记。分为四个部分,并没有包含分享的所有论文。第一部分写我最喜欢的论文,第二部分总结一些以模型融合为主要方法的论文,第三部分总结一些对模型组件进行微调的论文,第四部分是类似旧瓶装
- Transformer机器翻译模型(代码实现案例)
山山而川_R
NLPtransformer机器翻译深度学习
目标了解有关机器翻译的知识了解seq2seq架构使用Transformer构建机器翻译模型的实现过程1Transformer架构Transformer模型架构分析Transformer模型架构,大范围内包括两部分分别是encoder(编码器)和decoder(解码器),编码器和解码器的内部实现都使用了注意力机制实现,这里它要完成的是一个德文到英文的翻译:Willkommeninpeking→wel
- 【头歌实验】Keras机器翻译实战
纸飞机飞呀飞
头歌实验学习笔记keras机器翻译人工智能
【头歌实验】Keras机器翻译实战第1关:加载原始数据编程要求根据提示,在右侧编辑器补充代码,实现load_data函数,该函数需要加载path所代表的文件中的数据,并将文件中所有的内容按\n分割,转换成一个列表后返回。代码#coding:utf8importosdefload_data(path):'''读取原始语料数据:parampath:文件路径:return:句子列表,如['heisabo
- 自然语言处理之文本摘要:Transformer与文本摘要评价指标
zhubeibei168
自然语言(二)自然语言处理transformereasyui
自然语言处理之文本摘要:Transformer与文本摘要评价指标自然语言处理与文本摘要简介自然语言处理的基本概念自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,它研究如何让计算机理解、解释和生成人类语言。NLP技术涵盖了语音识别、语义理解、情感分析、机器翻译、文本摘要等多个方面,其目标是使计算机能够像人类一样处理语言信息,从而在各种应用场景中
- Transformer 架构在自然语言处理和计算机视觉等领域的应用和发展前景
搬砖的阿wei
transformer自然语言处理计算机视觉
Transformer架构在自然语言处理和计算机视觉等领域的应用一、自然语言处理领域的应用机器翻译原理:将源语言句子作为输入,Transformer编码器把句子转换为高维特征表示,解码器再根据这些表示生成目标语言句子。利用自注意力机制学习到源语言和目标语言句子之间的语义关系和语法结构的映射。举例:谷歌的神经机器翻译系统采用Transformer架构后,翻译质量得到了显著提升,译文更加准确、流畅,更
- NLP学习路线图(八):常见算法-线性回归、逻辑回归、决策树
摸鱼许可证
NLP学习路线图自然语言处理nlp
引言:当机器学习遇见自然语言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能皇冠上的明珠,正在深刻改变人机交互的方式。从智能客服到机器翻译,从情感分析到文本生成,NLP技术的突破都建立在坚实的机器学习基础之上。本文将深入剖析机器学习核心算法,揭示这些"传统"方法在NLP领域的独特价值,为开发者构建完整的AI知识体系提供关键路径。第一部分机器学习基础与核心算法1
- GRU在机器翻译中的实际应用案例
AIGC应用创新大全
gru机器翻译深度学习ai
GRU在机器翻译中的实际应用案例:从原理到实战的保姆级解析关键词:GRU(门控循环单元)、机器翻译、编码器-解码器、长序列依赖、神经机器翻译摘要:本文以“GRU在机器翻译中的实际应用”为核心,从生活场景切入,用“快递中转站”“翻译接力赛”等通俗比喻,逐步拆解GRU的核心原理、与机器翻译的结合方式,并用PyTorch实现一个中英短句翻译的实战案例。无论你是刚入门的AI爱好者,还是想深入理解循环神经网
- Transformer大模型实战 针对下游任务进行微调
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
Transformer,微调,下游任务,自然语言处理,预训练模型,迁移学习,计算机视觉1.背景介绍近年来,深度学习在人工智能领域取得了突破性进展,其中Transformer模型凭借其强大的序列建模能力,在自然语言处理(NLP)领域取得了显著成就。BERT、GPT、T5等基于Transformer的预训练模型,在文本分类、机器翻译、问答系统等任务上展现出令人惊叹的性能。然而,这些预训练模型通常在大型
- 【深度学习常用算法】八、深度解析Transformer架构:从理论到PyTorch实现
AI_DL_CODE
人工智能之深度学习深度学习算法transformer人工智能位置编码预训练模型机器翻译
摘要:本文深入探讨Transformer架构的核心设计原理、工程实现与应用场景。作为自然语言处理领域的里程碑式创新,Transformer通过自注意力机制彻底改变了序列建模方式,在机器翻译、文本生成、多模态学习等任务中取得突破性进展。文中详细解析了Transformer的编码器-解码器结构、多头注意力机制、位置编码策略及训练优化方法,并通过PyTorch实现完整的中英文翻译系统。实验表明,在IWS
- NLP学习路线图(五):常用库-NumPy, Pandas, Matplotlib
摸鱼许可证
NLP学习路线图自然语言处理pythonnlp
引言在人工智能领域,自然语言处理(NLP)已成为最受关注的技术方向之一。从智能客服到舆情分析,从机器翻译到情感识别,NLP技术正在深刻改变人机交互的方式。然而,要深入掌握NLP,除了理解算法原理,编程基础和数据处理能力更是不可或缺的基石。本文将聚焦Python生态中三大核心库——NumPy、Pandas和Matplotlib,通过实际案例演示它们如何支撑NLP项目的全流程开发。第一部分:NumPy
- 人工智能深度学习之自然语言处理必备神器huggingface,nlp,rnn,word2vec,bert,gpt
weixin_58351028
算法机器学习深度学习自然语言处理人工智能
一。Huggingface与Nlp介绍解读(1)nlp中经常会听到分类,机器翻译,情感分析,智能客服,文本摘要,阅读理解等。我们训练的nlp模型,目的学会数据表达的逻辑,学会人类文字怎么去描述与理解,这体现出模型要有语言能力,这样就不管后续做什么都行。nlp不像cv一样输入图像后最后输出结果一个结果就完事了。如何培养模型的学习能力呢?首先要很多很多输入学习资料(这些都是大厂才能做的事)让模型去学习
- 自然语言处理的简单介绍
一点.点
#深度学习知识点自然语言处理人工智能深度学习
目录一、起源与发展历程二、核心技术与方法三、作用与应用场景四、优缺点与挑战五、未来趋势总结一、起源与发展历程起源与早期探索理论奠基:20世纪初,瑞士语言学家索绪尔提出“语言作为符号系统”的理论,为NLP提供了语言学基础8。1950年,艾伦·图灵提出“图灵测试”,将自然语言对话作为机器智能的验证标准。早期实践:1954年乔治城-IBM实验首次尝试机器翻译,虽效果有限,但标志NLP的正式起步。发展阶段
- 突破语言障碍:AI原生应用中的跨语言理解技术详解
AI智能应用
AI-nativeai
突破语言障碍:AI原生应用中的跨语言理解技术详解关键词:跨语言理解、多语言预训练模型、神经机器翻译、零样本学习、语义对齐摘要:在全球化浪潮下,AI应用需要突破"语言围墙",让中文用户与阿拉伯语用户流畅对话、英语客服系统理解日语投诉、西班牙语电商平台读懂中文评价——这些需求都指向一项核心技术:跨语言理解(Cross-LingualUnderstanding)。本文将从生活场景出发,用"语言翻译官训练
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象