LSTM长短期记忆网络

1、 长短期记忆

LSTM 中引入了3个门,即输入门(input gate)、遗忘门(forget gate)和输出门(output gate),以及与隐藏状态形状相同的记忆细胞(某些文献把记忆细胞当成一种特殊的隐藏状态),从而记录额外的信息。

1.1 输入门、遗忘门和输出门

LSTM长短期记忆网络_第1张图片
I t = s i g m o i d ( X t W x i + H t − 1 W h i + b i ) I_t=sigmoid(X_tW_{xi}+H_{t-1}W{hi}+b_i) It=sigmoid(XtWxi+Ht1Whi+bi)
F t = s i g m o i d ( X t W x f + H t − 1 W h f + b f ) F_t=sigmoid(X_tW_{xf}+H_{t-1}W{hf}+b_f) Ft=sigmoid(XtWxf+Ht1Whf+bf)
O t = s i g m o i d ( X t W x o + H t − 1 W h o + b o ) O_t=sigmoid(X_tW_{xo}+H_{t-1}W{ho}+b_o) Ot=sigmoid(XtWxo+Ht1Who+bo)

1.2 候选记忆细胞

接下来,长短期记忆需要计算候选记忆细胞 C t ^ \hat{C_t} Ct^ 。它的计算与上面介绍的3个门类似,但使用了值域在 [−1,1]的tanh函数作为激活函数
LSTM长短期记忆网络_第2张图片
C t ^ = t a n h ( X t W x c + H t − 1 W h c + b c ) \hat{C_t}=tanh(X_tW_{xc}+H_{t-1}W_{hc}+b_c) Ct^=tanh(XtWxc+Ht1Whc+bc)

1.3 记忆细胞

LSTM长短期记忆网络_第3张图片
C t = F t ∗ C t − 1 + I t ∗ C t ^ C_t=F_t*C_{t-1}+I_t*\hat{C_t} Ct=FtCt1+ItCt^

1.4 隐藏状态

LSTM长短期记忆网络_第4张图片
H t = O t ∗ t a n h ( C t ) H_t=O_t*tanh(C_t) Ht=Ottanh(Ct)

2、代码定义模型

  • 初始化参数
num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
print('will use', device)

def get_params():
    def _one(shape):
        ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)
        return torch.nn.Parameter(ts, requires_grad=True)
    def _three():
        return (_one((num_inputs, num_hiddens)),
                _one((num_hiddens, num_hiddens)),
                torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True))
    
    W_xi, W_hi, b_i = _three()  # 输入门参数
    W_xf, W_hf, b_f = _three()  # 遗忘门参数
    W_xo, W_ho, b_o = _three()  # 输出门参数
    W_xc, W_hc, b_c = _three()  # 候选记忆细胞参数
    
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True)
    return nn.ParameterList([W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q])


def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), 
            torch.zeros((batch_size, num_hiddens), device=device))

  • 模型定义
def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] = params
    (H, C) = state
    outputs = []
    for X in inputs:
        I = torch.sigmoid(torch.matmul(X, W_xi) + torch.matmul(H, W_hi) + b_i)
        F = torch.sigmoid(torch.matmul(X, W_xf) + torch.matmul(H, W_hf) + b_f)
        O = torch.sigmoid(torch.matmul(X, W_xo) + torch.matmul(H, W_ho) + b_o)
        C_tilda = torch.tanh(torch.matmul(X, W_xc) + torch.matmul(H, W_hc) + b_c)
        C = F * C + I * C_tilda
        H = O * C.tanh()
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H, C)

你可能感兴趣的:(深度学习,lstm,网络,深度学习)