最近看到个两年前的AI案例,使用博弈树搜索算法实现AI下五子棋,什么是博弈树搜索呢?博弈就是相互采取最优策略斗争的意思。比如说下五子棋,你下一步,我下一步,这就是相互博弈。假设棋盘的大小是10*10,那就是100个点可以下, 那么第一步可选择的可能就是100, 假设是下在了A点, 那么第二步就有除了A点的剩下的99个点的可能。 假设下在了B点, 那么第二步就有除了B点的剩下的99个点的可能,假设下在了C点......
项目运行效果如下:
在GitHub中这位大神进行了详细的介绍说明,参见: https://github.com/colingogogo/gobang_AI#gobang_ai
用深度神经网络搭建马赛克神器,高清无码效果感人
=目录
1、项目背景
2、适用范围
3、使用方法
相信一提起马赛克这个东西,不少小伙伴都痛心疾首,虽然最近几年也频繁传出有在研发去除马赛克的软件,一直没有成品问世。不过最近一位程序员及经过不断努力终于完成了这款软件。
据悉这位程序员“deeppomf”用深度神经网络开发出了一个能抹去马赛克让原图重现的神奇程序:DeepCreamPy 。为了使这款软件达到更好的效果,作者在短短几个月内收集了超过10万张未打码的原图,但其中95%的图片他都没有仔细看过,只因为太过于浪费时间了。软件被上传分享后,在一周内被下载了500多次。不过目前该软件的局限性还很大,只能完成一些简单的修复。
该项目使用深度完全卷积神经网络(deep fully convolutional neural network),参照了英伟达在今年4月前发布的一篇论文。当然,英伟达原文的目的可不是用来做羞羞的事情,而是为了复原画面被单色条带遮挡的问题。
从实际效果来看,复原后的图片涂抹痕迹仍然比较明显,不过处理线条比较简单的漫画可以说是绰绰有余。
DeepCreamPy仅适用于薄码,如果马赛克太大太厚,去码可能会失效。另外,它对真人图片无效。如果你非要尝试,可以看一下强行使用的效果:
而且DeepCreamPy目前的版本还不能完全自动处理图片,需要用Photoshop首先对马赛克部分进行手动预处理。
第一步:安装程序
1、如果你是64位Windows用户,恭喜你可以直接下载exe程序
下载地址:https://github.com/deeppomf/DeepCreamPy/releases/latest
2、否则需要自己编译,编译代码需要一下组件:
请注意软件版本,Windows上的TensorFlow不兼容Python 2,也不兼容Python 3.7。
代码如下:
import numpy as np
from PIL import Image
import os
from copy import deepcopy
import config
from libs.pconv_hybrid_model import PConvUnet
from libs.utils import *
class Decensor:
def __init__(self):
self.args = config.get_args()
self.is_mosaic = self.args.is_mosaic
self.mask_color = [self.args.mask_color_red/255.0, self.args.
mask_color_green/255.0, self.args.mask_color_blue/255.0]
if not os.path.exists(self.args.decensor_output_path):
os.makedirs(self.args.decensor_output_path)
self.load_model()
def get_mask(self, colored):
mask = np.ones(colored.shape, np.uint8)
i, j = np.where(np.all(colored[0] == self.mask_color, axis=-1))
mask[0, i, j] = 0
return mask
def load_model(self):
self.model = PConvUnet()
self.model.load(
r"./models/model.h5",
train_bn=False,
lr=0.00005
)
def decensor_all_images_in_folder(self):
#load model once at beginning and reuse same model
#self.load_model()
color_dir = self.args.decensor_input_path
file_names = os.listdir(color_dir)
#convert all images into np arrays and put them in a list
for file_name in file_names:
color_file_path = os.path.join(color_dir, file_name)
color_bn, color_ext = os.path.splitext(file_name)
if os.path.isfile(color_file_path) and color_ext.casefold() == ".png":
print("-----------------------------------------------------------
---------------")
print("Decensoring the image {}".format(color_file_path))
colored_img = Image.open(color_file_path)
#if we are doing a mosaic decensor
if self.is_mosaic:
#get the original file that hasn't been colored
ori_dir = self.args.decensor_input_original_path
#since the original image might not be a png, test multiple file formats
valid_formats = {".png", ".jpg", ".jpeg"}
for test_file_name in os.listdir(ori_dir):
test_bn, test_ext = os.path.splitext(test_file_name)
if (test_bn == color_bn) and (test_ext.casefold() in valid_formats):
ori_file_path = os.path.join(ori_dir, test_file_name)
ori_img = Image.open(ori_file_path)
# colored_img.show()
self.decensor_image(ori_img, colored_img, file_name)
break
else: #for...else, i.e if the loop finished without encountering break
print("Corresponding original, uncolored image not found in {}.
".format(ori_file_path))
print("Check if it exists and is in the PNG or JPG format.")
else:
self.decensor_image(colored_img, colored_img, file_name)
print("--------------------------------------------------------------------------")
#decensors one image at a time
#TODO: decensor all cropped parts of the same image in a batch (then i need
input for colored an array of those images and make additional changes)
def decensor_image(self, ori, colored, file_name):
width, height = ori.size
#save the alpha channel if the image has an alpha channel
has_alpha = False
if (ori.mode == "RGBA"):
has_alpha = True
alpha_channel = np.asarray(ori)[:,:,3]
alpha_channel = np.expand_dims(alpha_channel, axis =-1)
ori = ori.convert('RGB')
ori_array = image_to_array(ori)
ori_array = np.expand_dims(ori_array, axis = 0)
if self.is_mosaic:
#if mosaic decensor, mask is empty
# mask = np.ones(ori_array.shape, np.uint8)
# print(mask.shape)
colored = colored.convert('RGB')
color_array = image_to_array(colored)
color_array = np.expand_dims(color_array, axis = 0)
mask = self.get_mask(color_array)
# mask_reshaped = mask[0,:,:,:] * 255.0
# mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
# mask_img.show()
else:
mask = self.get_mask(ori_array)
#colored image is only used for finding the regions
regions = find_regions(colored.convert('RGB'))
print("Found {region_count} censored regions in this image!".format
(region_count = len(regions)))
if len(regions) == 0 and not self.is_mosaic:
print("No green regions detected!")
return
output_img_array = ori_array[0].copy()
for region_counter, region in enumerate(regions, 1):
bounding_box = expand_bounding(ori, region)
crop_img = ori.crop(bounding_box)
# crop_img.show()
#convert mask back to image
mask_reshaped = mask[0,:,:,:] * 255.0
mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
#resize the cropped images
crop_img = crop_img.resize((512, 512))
crop_img_array = image_to_array(crop_img)
crop_img_array = np.expand_dims(crop_img_array, axis = 0)
#resize the mask images
mask_img = mask_img.crop(bounding_box)
mask_img = mask_img.resize((512, 512))
# mask_img.show()
#convert mask_img back to array
mask_array = image_to_array(mask_img)
#the mask has been upscaled so there will be values not equal to 0 or 1
mask_array[mask_array > 0] = 1
if self.is_mosaic:
a, b = np.where(np.all(mask_array == 0, axis = -1))
print(a, b)
coords = [coord for coord in zip(a,b) if ((coord[0] + coord[1]) % 2
== 0)]
a,b = zip(*coords)
mask_array[a,b] = 1
# mask_array = mask_array * 255.0
# img = Image.fromarray(mask_array.astype('uint8'))
# img.show()
# return
mask_array = np.expand_dims(mask_array, axis = 0)
# Run predictions for this batch of images
pred_img_array = self.model.predict([crop_img_array, mask_array, mask_array])
pred_img_array = pred_img_array * 255.0
pred_img_array = np.squeeze(pred_img_array, axis = 0)
#scale prediction image back to original size
bounding_width = bounding_box[2]-bounding_box[0]
bounding_height = bounding_box[3]-bounding_box[1]
#convert np array to image
# print(bounding_width,bounding_height)
# print(pred_img_array.shape)
pred_img = Image.fromarray(pred_img_array.astype('uint8'))
# pred_img.show()
pred_img = pred_img.resize((bounding_width, bounding_height),
resample = Image.BICUBIC)
pred_img_array = image_to_array(pred_img)
# print(pred_img_array.shape)
pred_img_array = np.expand_dims(pred_img_array, axis = 0)
# copy the decensored regions into the output image
for i in range(len(ori_array)):
for col in range(bounding_width):
for row in range(bounding_height):
bounding_width_index = col + bounding_box[0]
bounding_height_index = row + bounding_box[1]
if (bounding_width_index, bounding_height_index) in region:
output_img_array[bounding_height_index][bounding_
width_index] = pred_img_array[i,:,:,:][row][col]
print("{region_counter} out of {region_count} regions decensored."
.format(region_counter=region_counter, region_count=len(regions)))
output_img_array = output_img_array * 255.0
#restore the alpha channel if the image had one
if has_alpha:
output_img_array = np.concatenate((output_img_array, alpha_channel),
axis = 2)
output_img = Image.fromarray(output_img_array.astype('uint8'))
#save the decensored image
#file_name, _ = os.path.splitext(file_name)
save_path = os.path.join(self.args.decensor_output_path, file_name)
output_img.save(save_path)
print("Decensored image saved to {save_path}!".format(save_path=save_path))
return
if __name__ == '__main__':
decensor = Decensor()
decensor.decensor_all_images_in_folder()
注意:运行Demo需要下载模型,这里为了方便小伙伴,我已经下载完毕:用深度神经网络搭建马赛克神器,高清无码效果感人-深度学习工具类资源-CSDN下载
第二步:手动处理黑条遮挡和马赛克遮挡
。。。。。。。。。。。。。。。。。
版权原因,完整文章,请参考如下:
用深度神经网络搭建马赛克神器,高清无码效果感人