GitHub开源的AI下五子棋(基于博弈树极大极小值alpha-beta剪枝搜索)

最近看到个两年前的AI案例,使用博弈树搜索算法实现AI下五子棋,什么是博弈树搜索呢?博弈就是相互采取最优策略斗争的意思。比如说下五子棋,你下一步,我下一步,这就是相互博弈。假设棋盘的大小是10*10,那就是100个点可以下, 那么第一步可选择的可能就是100, 假设是下在了A点, 那么第二步就有除了A点的剩下的99个点的可能。 假设下在了B点, 那么第二步就有除了B点的剩下的99个点的可能,假设下在了C点......

项目运行效果如下:

GitHub开源的AI下五子棋(基于博弈树极大极小值alpha-beta剪枝搜索)_第1张图片

在GitHub中这位大神进行了详细的介绍说明,参见: https://github.com/colingogogo/gobang_AI#gobang_ai

用深度神经网络搭建马赛克神器,高清无码效果感人

=目录

1、项目背景

2、适用范围

3、使用方法


1、项目背景

相信一提起马赛克这个东西,不少小伙伴都痛心疾首,虽然最近几年也频繁传出有在研发去除马赛克的软件,一直没有成品问世。不过最近一位程序员及经过不断努力终于完成了这款软件。

据悉这位程序员“deeppomf”用深度神经网络开发出了一个能抹去马赛克让原图重现的神奇程序:DeepCreamPy 。为了使这款软件达到更好的效果,作者在短短几个月内收集了超过10万张未打码的原图,但其中95%的图片他都没有仔细看过,只因为太过于浪费时间了。软件被上传分享后,在一周内被下载了500多次。不过目前该软件的局限性还很大,只能完成一些简单的修复。

GitHub开源的AI下五子棋(基于博弈树极大极小值alpha-beta剪枝搜索)_第2张图片





















该项目使用深度完全卷积神经网络(deep fully convolutional neural network),参照了英伟达在今年4月前发布的一篇论文。当然,英伟达原文的目的可不是用来做羞羞的事情,而是为了复原画面被单色条带遮挡的问题。

GitHub开源的AI下五子棋(基于博弈树极大极小值alpha-beta剪枝搜索)_第3张图片

从实际效果来看,复原后的图片涂抹痕迹仍然比较明显,不过处理线条比较简单的漫画可以说是绰绰有余。 

2、适用范围

DeepCreamPy仅适用于薄码,如果马赛克太大太厚,去码可能会失效。另外,它对真人图片无效。如果你非要尝试,可以看一下强行使用的效果:

而且DeepCreamPy目前的版本还不能完全自动处理图片,需要用Photoshop首先对马赛克部分进行手动预处理。 

3、使用方法

第一步:安装程序

1、如果你是64位Windows用户,恭喜你可以直接下载exe程序

下载地址:https://github.com/deeppomf/DeepCreamPy/releases/latest

2、否则需要自己编译,编译代码需要一下组件:

  • Python 3.6
  • TensorFlow 1.10
  • Keras 2.2.4
  • Pillow
  • h5py

请注意软件版本,Windows上的TensorFlow不兼容Python 2,也不兼容Python 3.7。

代码如下:

 
  
  1. import numpy as np
  2. from PIL import Image
  3. import os
  4. from copy import deepcopy
  5. import config
  6. from libs.pconv_hybrid_model import PConvUnet
  7. from libs.utils import *
  8. class Decensor:
  9. def __init__(self):
  10. self.args = config.get_args()
  11. self.is_mosaic = self.args.is_mosaic
  12. self.mask_color = [self.args.mask_color_red/255.0, self.args.
  13. mask_color_green/255.0, self.args.mask_color_blue/255.0]
  14. if not os.path.exists(self.args.decensor_output_path):
  15. os.makedirs(self.args.decensor_output_path)
  16. self.load_model()
  17. def get_mask(self, colored):
  18. mask = np.ones(colored.shape, np.uint8)
  19. i, j = np.where(np.all(colored[0] == self.mask_color, axis=-1))
  20. mask[0, i, j] = 0
  21. return mask
  22. def load_model(self):
  23. self.model = PConvUnet()
  24. self.model.load(
  25. r"./models/model.h5",
  26. train_bn=False,
  27. lr=0.00005
  28. )
  29. def decensor_all_images_in_folder(self):
  30. #load model once at beginning and reuse same model
  31. #self.load_model()
  32. color_dir = self.args.decensor_input_path
  33. file_names = os.listdir(color_dir)
  34. #convert all images into np arrays and put them in a list
  35. for file_name in file_names:
  36. color_file_path = os.path.join(color_dir, file_name)
  37. color_bn, color_ext = os.path.splitext(file_name)
  38. if os.path.isfile(color_file_path) and color_ext.casefold() == ".png":
  39. print("-----------------------------------------------------------
  40. ---------------")
  41. print("Decensoring the image {}".format(color_file_path))
  42. colored_img = Image.open(color_file_path)
  43. #if we are doing a mosaic decensor
  44. if self.is_mosaic:
  45. #get the original file that hasn't been colored
  46. ori_dir = self.args.decensor_input_original_path
  47. #since the original image might not be a png, test multiple file formats
  48. valid_formats = {".png", ".jpg", ".jpeg"}
  49. for test_file_name in os.listdir(ori_dir):
  50. test_bn, test_ext = os.path.splitext(test_file_name)
  51. if (test_bn == color_bn) and (test_ext.casefold() in valid_formats):
  52. ori_file_path = os.path.join(ori_dir, test_file_name)
  53. ori_img = Image.open(ori_file_path)
  54. # colored_img.show()
  55. self.decensor_image(ori_img, colored_img, file_name)
  56. break
  57. else: #for...else, i.e if the loop finished without encountering break
  58. print("Corresponding original, uncolored image not found in {}.
  59. ".format(ori_file_path))
  60. print("Check if it exists and is in the PNG or JPG format.")
  61. else:
  62. self.decensor_image(colored_img, colored_img, file_name)
  63. print("--------------------------------------------------------------------------")
  64. #decensors one image at a time
  65. #TODO: decensor all cropped parts of the same image in a batch (then i need
  66. input for colored an array of those images and make additional changes)
  67. def decensor_image(self, ori, colored, file_name):
  68. width, height = ori.size
  69. #save the alpha channel if the image has an alpha channel
  70. has_alpha = False
  71. if (ori.mode == "RGBA"):
  72. has_alpha = True
  73. alpha_channel = np.asarray(ori)[:,:,3]
  74. alpha_channel = np.expand_dims(alpha_channel, axis =-1)
  75. ori = ori.convert('RGB')
  76. ori_array = image_to_array(ori)
  77. ori_array = np.expand_dims(ori_array, axis = 0)
  78. if self.is_mosaic:
  79. #if mosaic decensor, mask is empty
  80. # mask = np.ones(ori_array.shape, np.uint8)
  81. # print(mask.shape)
  82. colored = colored.convert('RGB')
  83. color_array = image_to_array(colored)
  84. color_array = np.expand_dims(color_array, axis = 0)
  85. mask = self.get_mask(color_array)
  86. # mask_reshaped = mask[0,:,:,:] * 255.0
  87. # mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
  88. # mask_img.show()
  89. else:
  90. mask = self.get_mask(ori_array)
  91. #colored image is only used for finding the regions
  92. regions = find_regions(colored.convert('RGB'))
  93. print("Found {region_count} censored regions in this image!".format
  94. (region_count = len(regions)))
  95. if len(regions) == 0 and not self.is_mosaic:
  96. print("No green regions detected!")
  97. return
  98. output_img_array = ori_array[0].copy()
  99. for region_counter, region in enumerate(regions, 1):
  100. bounding_box = expand_bounding(ori, region)
  101. crop_img = ori.crop(bounding_box)
  102. # crop_img.show()
  103. #convert mask back to image
  104. mask_reshaped = mask[0,:,:,:] * 255.0
  105. mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
  106. #resize the cropped images
  107. crop_img = crop_img.resize((512, 512))
  108. crop_img_array = image_to_array(crop_img)
  109. crop_img_array = np.expand_dims(crop_img_array, axis = 0)
  110. #resize the mask images
  111. mask_img = mask_img.crop(bounding_box)
  112. mask_img = mask_img.resize((512, 512))
  113. # mask_img.show()
  114. #convert mask_img back to array
  115. mask_array = image_to_array(mask_img)
  116. #the mask has been upscaled so there will be values not equal to 0 or 1
  117. mask_array[mask_array > 0] = 1
  118. if self.is_mosaic:
  119. a, b = np.where(np.all(mask_array == 0, axis = -1))
  120. print(a, b)
  121. coords = [coord for coord in zip(a,b) if ((coord[0] + coord[1]) % 2
  122. == 0)]
  123. a,b = zip(*coords)
  124. mask_array[a,b] = 1
  125. # mask_array = mask_array * 255.0
  126. # img = Image.fromarray(mask_array.astype('uint8'))
  127. # img.show()
  128. # return
  129. mask_array = np.expand_dims(mask_array, axis = 0)
  130. # Run predictions for this batch of images
  131. pred_img_array = self.model.predict([crop_img_array, mask_array, mask_array])
  132. pred_img_array = pred_img_array * 255.0
  133. pred_img_array = np.squeeze(pred_img_array, axis = 0)
  134. #scale prediction image back to original size
  135. bounding_width = bounding_box[2]-bounding_box[0]
  136. bounding_height = bounding_box[3]-bounding_box[1]
  137. #convert np array to image
  138. # print(bounding_width,bounding_height)
  139. # print(pred_img_array.shape)
  140. pred_img = Image.fromarray(pred_img_array.astype('uint8'))
  141. # pred_img.show()
  142. pred_img = pred_img.resize((bounding_width, bounding_height),
  143. resample = Image.BICUBIC)
  144. pred_img_array = image_to_array(pred_img)
  145. # print(pred_img_array.shape)
  146. pred_img_array = np.expand_dims(pred_img_array, axis = 0)
  147. # copy the decensored regions into the output image
  148. for i in range(len(ori_array)):
  149. for col in range(bounding_width):
  150. for row in range(bounding_height):
  151. bounding_width_index = col + bounding_box[0]
  152. bounding_height_index = row + bounding_box[1]
  153. if (bounding_width_index, bounding_height_index) in region:
  154. output_img_array[bounding_height_index][bounding_
  155. width_index] = pred_img_array[i,:,:,:][row][col]
  156. print("{region_counter} out of {region_count} regions decensored."
  157. .format(region_counter=region_counter, region_count=len(regions)))
  158. output_img_array = output_img_array * 255.0
  159. #restore the alpha channel if the image had one
  160. if has_alpha:
  161. output_img_array = np.concatenate((output_img_array, alpha_channel),
  162. axis = 2)
  163. output_img = Image.fromarray(output_img_array.astype('uint8'))
  164. #save the decensored image
  165. #file_name, _ = os.path.splitext(file_name)
  166. save_path = os.path.join(self.args.decensor_output_path, file_name)
  167. output_img.save(save_path)
  168. print("Decensored image saved to {save_path}!".format(save_path=save_path))
  169. return
  170. if __name__ == '__main__':
  171. decensor = Decensor()
  172. decensor.decensor_all_images_in_folder()

注意:运行Demo需要下载模型,这里为了方便小伙伴,我已经下载完毕:用深度神经网络搭建马赛克神器,高清无码效果感人-深度学习工具类资源-CSDN下载

第二步:手动处理黑条遮挡和马赛克遮挡

。。。。。。。。。。。。。。。。。

版权原因,完整文章,请参考如下:

用深度神经网络搭建马赛克神器,高清无码效果感人

你可能感兴趣的:(框架,剪枝,算法,机器学习)