关键点检测——HrNet网络结构搭建

参考视频讲解如下: 

【HRNet源码解析(Pytorch)】 https://www.bilibili.com/video/BV1ar4y157JM?p=2&share_source=copy_web&vd_source=95705b32f23f70b32dfa1721628d5874

关键点检测——HrNet网络结构搭建_第1张图片

import torch.nn as nn

BN_MOMENTUM = 0.1


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
                               bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion,
                                  momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class StageModule(nn.Module):
    def __init__(self, input_branches, output_branches, c):
        """
        构建对应stage,即用来融合不同尺度的实现
        :param input_branches: 输入的分支数,每个分支对应一种尺度
        :param output_branches: 输出的分支数
        :param c: 输入的第一个分支通道数
        """
        super().__init__()
        self.input_branches = input_branches
        self.output_branches = output_branches

        self.branches = nn.ModuleList() #用于存储每个分支中所用到的一系列BasicBlock
        for i in range(self.input_branches):  # 每个分支上都先通过4个BasicBlock
            w = c * (2 ** i)  # 对应第i个分支的通道数
            branch = nn.Sequential(
                BasicBlock(w, w),
                BasicBlock(w, w),
                BasicBlock(w, w),
                BasicBlock(w, w)
            )
            self.branches.append(branch)

        self.fuse_layers = nn.ModuleList()  # 用于融合每个分支上的输出
        for i in range(self.output_branches):
            self.fuse_layers.append(nn.ModuleList()) #对每一个输出分支初始化一个ModuleList()
            for j in range(self.input_branches): #遍历input_branches次
                if i == j:
                    # 当输入、输出为同一个分支时不做任何处理
                    self.fuse_layers[-1].append(nn.Identity())
                elif i < j: #需要进行上采样
                    # 当输入分支j大于输出分支i时(即输入分支下采样率大于输出分支下采样率),
                    # 此时需要对输入分支j进行通道调整以及上采样,方便后续相加
                    self.fuse_layers[-1].append(  #在ModuleList()中添加一个nn.Sequential
                        nn.Sequential(
                            nn.Conv2d(c * (2 ** j), c * (2 ** i), kernel_size=1, stride=1, bias=False), #通道收缩
                            nn.BatchNorm2d(c * (2 ** i), momentum=BN_MOMENTUM),
                            nn.Upsample(scale_factor=2.0 ** (j - i), mode='nearest') #进行2,4,8倍的上采样
                        )
                    )
                else:  # i > j
                    # 当输入分支j小于输出分支i时(即输入分支下采样率小于输出分支下采样率),
                    # 此时需要对输入分支j进行通道调整以及下采样,方便后续相加
                    # 注意,这里每次下采样2x都是通过一个3x3卷积层实现的,4x就是两个,8x就是三个,总共i-j个
                    ops = []
                    # 前i-j-1个卷积层不用变通道,只进行下采样

                    # 下采样模块中有几个红色的Conv,红色的Conv只改变特征图大小,不改变通道数;黄色的Conv特征图大小和通道数都改变
                    for k in range(i - j - 1): #i-j-1即为下采样中对应的红色的Conv数,可能有0,1,2个,所有需要循环
                        ops.append(
                            nn.Sequential(
                                nn.Conv2d(c * (2 ** j), c * (2 ** j), kernel_size=3, stride=2, padding=1, bias=False), #通道数不变
                                nn.BatchNorm2d(c * (2 ** j), momentum=BN_MOMENTUM),
                                nn.ReLU(inplace=True)
                            )
                        )
                    # 最后一个卷积层不仅要调整通道,还要进行下采样,只有一个,不需要循环
                    ops.append(
                        nn.Sequential(
                            nn.Conv2d(c * (2 ** j), c * (2 ** i), kernel_size=3, stride=2, padding=1, bias=False), #通道数加倍
                            nn.BatchNorm2d(c * (2 ** i), momentum=BN_MOMENTUM)
                        )
                    )
                    self.fuse_layers[-1].append(nn.Sequential(*ops))

        self.relu = nn.ReLU(inplace=True) #Add后需要接一个relu

    def forward(self, x):
        # 每个分支通过对应的block
        x = [branch(xi) for branch, xi in zip(self.branches, x)] #将对应分支的输入,输入到对应的branch分支中

        # 接着融合不同尺寸信息
        x_fused = []
        for i in range(len(self.fuse_layers)): #循环得到第i个分支的输出
            x_fused.append(
                self.relu(
                    # 将x[j]输入到fuse_layers[0][0]、fuse_layers[0][1].......,再将输出分支进行sum求和,然后在经过relu,添加到x_fused中
                    sum([self.fuse_layers[i][j](x[j]) for j in range(len(self.branches))])
                )
            )

        return x_fused

#Hrnet
class HighResolutionNet(nn.Module):
    def __init__(self, base_channel: int = 32, num_joints: int = 17):
        super().__init__()
        # Stem
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)

        # Stage1
        downsample = nn.Sequential(
            nn.Conv2d(64, 256, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(256, momentum=BN_MOMENTUM)
        )
        self.layer1 = nn.Sequential(
            Bottleneck(64, 64, downsample=downsample),
            Bottleneck(256, 64),
            Bottleneck(256, 64),
            Bottleneck(256, 64)
        )

        self.transition1 = nn.ModuleList([
            nn.Sequential(
                nn.Conv2d(256, base_channel, kernel_size=3, stride=1, padding=1, bias=False),
                nn.BatchNorm2d(base_channel, momentum=BN_MOMENTUM),
                nn.ReLU(inplace=True)
            ),
            nn.Sequential(
                nn.Sequential(  # 这里又使用一次Sequential是为了适配原项目中提供的权重
                    nn.Conv2d(256, base_channel * 2, kernel_size=3, stride=2, padding=1, bias=False),
                    nn.BatchNorm2d(base_channel * 2, momentum=BN_MOMENTUM),
                    nn.ReLU(inplace=True)
                )
            )
        ])

        # Stage2
        self.stage2 = nn.Sequential(
            StageModule(input_branches=2, output_branches=2, c=base_channel)
        )

        # transition2
        self.transition2 = nn.ModuleList([
            nn.Identity(),  # None,  - Used in place of "None" because it is callable
            nn.Identity(),  # None,  - Used in place of "None" because it is callable
            nn.Sequential(
                nn.Sequential(
                    nn.Conv2d(base_channel * 2, base_channel * 4, kernel_size=3, stride=2, padding=1, bias=False),
                    nn.BatchNorm2d(base_channel * 4, momentum=BN_MOMENTUM),
                    nn.ReLU(inplace=True)
                )
            )
        ])

        # Stage3  包含4个StageModule
        self.stage3 = nn.Sequential(
            StageModule(input_branches=3, output_branches=3, c=base_channel),
            StageModule(input_branches=3, output_branches=3, c=base_channel),
            StageModule(input_branches=3, output_branches=3, c=base_channel),
            StageModule(input_branches=3, output_branches=3, c=base_channel)
        )

        # transition3
        self.transition3 = nn.ModuleList([
            nn.Identity(),  # None,  - Used in place of "None" because it is callable
            nn.Identity(),  # None,  - Used in place of "None" because it is callable
            nn.Identity(),  # None,  - Used in place of "None" because it is callable
            nn.Sequential(
                nn.Sequential(
                    nn.Conv2d(base_channel * 4, base_channel * 8, kernel_size=3, stride=2, padding=1, bias=False),
                    nn.BatchNorm2d(base_channel * 8, momentum=BN_MOMENTUM),
                    nn.ReLU(inplace=True)
                )
            )
        ])

        # Stage4  包含3个StageModule
        # 注意,最后一个StageModule只输出分辨率最高的特征层
        self.stage4 = nn.Sequential(
            StageModule(input_branches=4, output_branches=4, c=base_channel),
            StageModule(input_branches=4, output_branches=4, c=base_channel),
            StageModule(input_branches=4, output_branches=1, c=base_channel)
        )

        # Final layer
        self.final_layer = nn.Conv2d(base_channel, num_joints, kernel_size=1, stride=1)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)

        x = self.layer1(x)
        # x是一个列表
        x = [trans(x) for trans in self.transition1]  # Since now, x is a list
        # x = [
        #     self.transition1[0](x),
        #     self.transition1[1](x),
        # ]

        x = self.stage2(x)
        x = [
            self.transition2[0](x[0]),
            self.transition2[1](x[1]),
            self.transition2[2](x[-1]) #这里的x[-1]其实就是x[1]
        ]  # New branch derives from the "upper" branch only

        x = self.stage3(x)
        x = [
            self.transition3[0](x[0]),
            self.transition3[1](x[1]),
            self.transition3[2](x[2]),
            self.transition3[3](x[-1]), #这里的x[-1]其实就是x[2]
        ]  # New branch derives from the "upper" branch only

        x = self.stage4(x)

        x = self.final_layer(x[0]) #stage4(x)只有一个输出,但x是一个列表,故用x[0]

        return x

reference

【HRNet源码解析(Pytorch)】 https://www.bilibili.com/video/BV1ar4y157JM?p=2&share_source=copy_web&vd_source=95705b32f23f70b32dfa1721628d5874

你可能感兴趣的:(深度学习,pytorch,python,计算机视觉,神经网络)