dlib
概述Dlib
是一个包含机器学习算法的C++
开源工具包。Dlib
可以帮助您创建很多复杂的机器学习方面的软件来帮助解决实际问题。目前Dlib
已经被广泛的用在行业和学术领域,包括机器人,嵌入式设备,移动电话和大型高性能计算环境.
import dlib
from cv2 import cv2
# step 1. create an object detector based on hog
detector = dlib.get_frontal_face_detector() # _dlib_pybind11.fhog_object_detector
# step 2. read an image using dlib or cv2
# note that the difference between the image data formated as numpy.ndarray read by dlib and cv2 is that dlib read it channels as *R G B* order while cv2 read as *B G R*,so you should do one more step to convert the image if using cv2
image_path = "sample.jpg"
img = dlib.load_rgb_image(image_path)
# img = cv2.imread(image_path)
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# step 3. using the numpy.ndarray image data as input to detect the front face on the image
# The 1 in the second argument indicates that we should upsample the image 1 time.
# This will make everything bigger and allow us to detect more faces.
detections = detector(img, 1) # List[_dlib_pybind11.rectangle]
# step 3.1 (Optional) if you want to get more detail information,using function run() instead
# detections, scores, idx = detector.run(img, 1, 0.5) # List[_dlib_pybind11.rectangle] List[int] List[int]
# step 4. get point coordinates from the detection results
# let's just fetch one instead all of the in a loop
detection = detections[0]
left,top,right,bottom = detection .left(),detection .top(),detection .right(),detection .bottom()
# step x : now you can do whatever you want since you've already got what you want.
import dlib
# step 1. make sure you have downloaded the correct model file
face_detector_model_path = '../models/mmod_human_face_detector.dat'
# step 2. load this model and create a cnn face detector
face_detector = dlib.cnn_face_detection_model_v1(face_detector_model_path) # dlib.cnn_face_detection_model_v1
# step 3. read an image using dlib or cv2
# note that the difference between the image data formated as numpy.ndarray read by dlib and cv2 is that dlib read it channels as *R G B* order while cv2 read as *B G R*,so you should do one more step to convert the image if using cv2
image_path = "sample.jpg"
img = dlib.load_rgb_image(image_path)
# img = cv2.imread(image_path)
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# step 4. predict and detect
detections = face_detector(img, 1) # dlib.mmod_rectangles
# step 5. get just one of the rectangle instead all of them ,the type is mmod_rectangle
detection = detections[0] # dlib.mmod_rectangle
# the mmod_rectangle contains two parts : confidence and rect
print(detection.confidence, detection.rect)
# step 6.get face coordinates for just one as sample
left,top,right,bottom = detection.rect.left(),detection.rect.top(),detection.rect.right(),detection.rect.bottom()
# step x. do anything you would like to
dlib.fhog_object_detector
: hog模型的人脸检测对象,常用方法: __call()__
和run()
dlib.rectangle
:人脸检测结果,用于表示人脸的矩形区域,常用方法:left()
right()``top()``bottom()
dlib.cnn_face_detection_model_v1
:卷积神经网络模型的人脸检测对象,常用方法: __call()__
dlib.mmod_rectangle
:人脸检测结果,包含了表示人脸的巨型区域以及检测置信度,成员包含: rect
和confidence
,其中,rect
为 dlib.rectangle
类型,confidence
为float
类型dlib.mmod_rectangles
:包含多个 dlib.mmod_rectangle
对象类定义参考链接:Python API 链接
fhog_object_detector
类接口定义fhog_object_detector
类在源码中为C++类,这里使用伪代码编译观察其接口与调用方法
class dlib.fhog_object_detector():
"""
This object represents a sliding window histogram-of-oriented-gradients based object detector.
"""
def __call__(self: dlib.fhog_object_detector, image: array, upsample_num_times: int = 0L) -> dlib.rectangles:
"""
requires
image is a numpy ndarray containing either an 8bit grayscale or RGB image.
upsample_num_times >= 0
ensures
This function runs the object detector on the input image and returns a list of detections.
Upsamples the image upsample_num_times before running the basic detector.
"""
def __init__(self: dlib.fhog_object_detector, arg0: unicode) -> None:
'''
Loads an object detector from a file that contains the output of the train_simple_object_detector() routine or a serialized C++ object of type object_detector>>.
detection_window_height
detection_window_width
num_detectors
'''
pass
def run(self: dlib.fhog_object_detector, image: array, upsample_num_times: int = 0L,
adjust_threshold: float = 0.0) -> tuple:
"""
requires
image is a numpy ndarray containing either an 8bit grayscale or RGB image.
upsample_num_times >= 0
ensures
This function runs the object detector on the input image and returns a tuple of (list of detections, list of scores, list of weight_indices).
Upsamples the image upsample_num_times before running the basic detector.
"""
pass
def run_multiple(detectors: list, image: array, upsample_num_times: int = 0L, adjust_threshold: float = 0.0)->tuple:
"""
requires
detectors is a list of detectors.
image is a numpy ndarray containing either an 8bit grayscale or RGB image.
upsample_num_times >= 0
ensures
This function runs the list of object detectors at once on the input image and returns a tuple of (list of detections, list of scores, list of weight_indices).
Upsamples the image upsample_num_times before running the basic detector.
"""
pass
def save(self: dlib.fhog_object_detector, detector_output_filename: unicode)->None:
'''
Save a simple_object_detector to the provided path.
'''
pass
rectangle
类接口定义class dlib.rectangle
This object represents a rectangular area of an image.
__init__(*args, **kwargs)
Overloaded function.
__init__(self: dlib.rectangle, left: int, top: int, right: int, bottom: int) -> None
__init__(self: dlib.rectangle, rect: dlib::drectangle) -> None
__init__(self: dlib.rectangle, rect: dlib.rectangle) -> None
__init__(self: dlib.rectangle) -> None
area(self: dlib.rectangle) → int
bl_corner(self: dlib.rectangle) → dlib.point
Returns the bottom left corner of the rectangle.
bottom(self: dlib.rectangle) → int
br_corner(self: dlib.rectangle) → dlib.point
Returns the bottom right corner of the rectangle.
center(self: dlib.rectangle) → dlib.point
contains(*args, **kwargs)
Overloaded function.
contains(self: dlib.rectangle, point: dlib.point) -> bool
contains(self: dlib.rectangle, point: dlib.dpoint) -> bool
contains(self: dlib.rectangle, x: int, y: int) -> bool
contains(self: dlib.rectangle, rectangle: dlib.rectangle) -> bool
dcenter(self: dlib.rectangle) → dlib.point
height(self: dlib.rectangle) → int
intersect(self: dlib.rectangle, rectangle: dlib.rectangle) → dlib.rectangle
is_empty(self: dlib.rectangle) → bool
left(self: dlib.rectangle) → int
right(self: dlib.rectangle) → int
tl_corner(self: dlib.rectangle) → dlib.point
Returns the top left corner of the rectangle.
top(self: dlib.rectangle) → int
tr_corner(self: dlib.rectangle) → dlib.point
Returns the top right corner of the rectangle.
width(self: dlib.rectangle) → int
cnn_face_detection_model_v1
类定义class dlib.cnn_face_detection_model_v1
This object detects human faces in an image. The constructor loads the face detection model from a file. You can download a pre-trained model from http://dlib.net/files/mmod_human_face_detector.dat.bz2.
__call__(*args, **kwargs)
Overloaded function.
__call__(self: dlib.cnn_face_detection_model_v1, imgs: list, upsample_num_times: int=0L, batch_size: int=128L) -> std::vector >, std::allocator > > >
takes a list of images as input returning a 2d list of mmod rectangles
__call__(self: dlib.cnn_face_detection_model_v1, img: array, upsample_num_times: int=0L) -> std::vector >
Find faces in an image using a deep learning model.
Upsamples the image upsample_num_times before running the face detector.
__init__(self: dlib.cnn_face_detection_model_v1, filename: unicode) → Non
mmod_rectangle
mmod_rectangles
mmod_rectangless
class dlib.mmod_rectangle
Wrapper around a rectangle object and a detection confidence score.
__init__
x.__init__(...) initializes x; see help(type(x)) for signature
confidence
rect
class dlib.mmod_rectangles
An array of mmod rectangle objects.
__init__(*args, **kwargs)
Overloaded function.
__init__(self: dlib.mmod_rectangles) -> None
__init__(self: dlib.mmod_rectangles, arg0: dlib.mmod_rectangles) -> None
Copy constructor
__init__(self: dlib.mmod_rectangles, arg0: iterable) -> None
append(self: dlib.mmod_rectangles, x: dlib.mmod_rectangle) → None
Add an item to the end of the list
count(self: dlib.mmod_rectangles, x: dlib.mmod_rectangle) → int
Return the number of times x appears in the list
extend(*args, **kwargs)
Overloaded function.
extend(self: dlib.mmod_rectangles, L: dlib.mmod_rectangles) -> None
Extend the list by appending all the items in the given list
extend(self: dlib.mmod_rectangles, arg0: list) -> None
insert(self: dlib.mmod_rectangles, i: int, x: dlib.mmod_rectangle) → None
Insert an item at a given position.
pop(*args, **kwargs)
Overloaded function.
pop(self: dlib.mmod_rectangles) -> dlib.mmod_rectangle
Remove and return the last item
pop(self: dlib.mmod_rectangles, i: int) -> dlib.mmod_rectangle
Remove and return the item at index i
remove(self: dlib.mmod_rectangles, x: dlib.mmod_rectangle) → None
Remove the first item from the list whose value is x. It is an error if there is no such item.
class dlib.mmod_rectangless
A 2D array of mmod rectangle objects.
__init__(*args, **kwargs)
Overloaded function.
__init__(self: dlib.mmod_rectangless) -> None
__init__(self: dlib.mmod_rectangless, arg0: dlib.mmod_rectangless) -> None
Copy constructor
__init__(self: dlib.mmod_rectangless, arg0: iterable) -> None
append(self: dlib.mmod_rectangless, x: dlib.mmod_rectangles) → None
Add an item to the end of the list
count(self: dlib.mmod_rectangless, x: dlib.mmod_rectangles) → int
Return the number of times x appears in the list
extend(*args, **kwargs)
Overloaded function.
extend(self: dlib.mmod_rectangless, L: dlib.mmod_rectangless) -> None
Extend the list by appending all the items in the given list
extend(self: dlib.mmod_rectangless, arg0: list) -> None
insert(self: dlib.mmod_rectangless, i: int, x: dlib.mmod_rectangles) → None
Insert an item at a given position.
pop(*args, **kwargs)
Overloaded function.
pop(self: dlib.mmod_rectangless) -> dlib.mmod_rectangles
Remove and return the last item
pop(self: dlib.mmod_rectangless, i: int) -> dlib.mmod_rectangles
Remove and return the item at index i
remove(self: dlib.mmod_rectangless, x: dlib.mmod_rectangles) → None
Remove the first item from the list whose value is x. It is an error if there is no such item.