如图1(a)所示,pc(xc,yc,zc)为相机坐标系中的点云,Pw (Xw,Yw,Zw)是世界坐标系中的点云,由(1)式可得
如图1(b)所示,由于靶标板(标定板)所指定的 坐标系相对于棋盘格角点所建立的世界坐标系有一 定的偏移,这里采用补偿的方式进行坐标系校正。设靶标的厚度为 Δz,世界坐标系原点在待测区域的X和Y轴的偏移分别为Δx 和Δy,补偿偏移量Δl3×1=[Δx Δy Δz]T,则(6)式可进一步表示为 3.2 采用空间投影的点云分割方法 参考前述的图像阈值、靶标世界坐标系与点云区域的关系,为了突出目标区域以实现点云分割,可将点云的观测视角旋转至俯视角度(鸟瞰视角),如图2所示,这样可减少背景点云信息,使目标点云呈现更多信息,采用相机模型将点云投影至相机的图像像素。在得到旋转投影后场景的二维图像后,采用图像阈值分割的方法可快速地得到目标阈值范围,还原后得到场景分割的目标点云。 参考(6)式得到世界坐标系中的点云 Pwl(Xwl, Ywl,Zwl),将其变换到场景点云的俯视角时,有: 根据单目摄像机模型,可以得到点云对应的二值图像坐标为: 4、结果对比 4.1 场景点云获取 为了验证算法的可行性,搭建系统硬件,如图3 所示,系统 包 括 靶 标 (尺 寸 规 格:棋 盘 格 角 点 数 为 5×7,方格大小为 34 mm×34mm)、双目摄像机 (MER-500-7UM)、8mm定焦镜头、投影仪(BenQ) 和上位机[2.53GHzIntel(R)Core (TM)2Duo CPU,2GBRAM]。 待测场景如图4(a)~(c)所示, RGB-D点云采用投影仪投射格雷码编码光栅和摄像机拍摄其光栅解码所得,其中包含1幅明、暗视场 图像以及40幅正交格雷码编码光栅图像。建立三个层叠的米袋场景(场景1#、2#、3#),分别获取整个场景并分割其米袋区域点云数据。根据张氏标定方法建立的靶标坐标系,获得外参数矩阵[R3×3t3×1],将三个场景点云映射到世界坐标系中,场景图片在靶标坐标系中的点云如图 4(d)~(f)所示。 利用图像阈值与点云关系实现点云分割,首先获得场景RGB图,利用标定参数进行径向与切向畸变校正,结果如图5(a)所示; 利用最大类间方差法 (Otsu)对校正后的场景图进行处理 ,以突出感兴 趣区域,结果如图5(b)所示。 其次,对感兴趣区域 中的空洞进行形态学处理,即空洞填充;建立点云坐 标与图像像素坐标的映射关系,并判断所映射的点 云是否在图像感兴趣区域里。 最后分割出映射到感 兴趣区域的点云数据,如图5(c)所示。 采用靶标坐标系与点云区域实现点云分割,首先测量并确定目标物体的待放置空间区域,把靶标板放置在待测量物体区域内,根据靶标板手工测量或设计的规格参数确定 X 轴偏移量 Δx、Y 轴偏移 量 Δy 和靶标板厚度 Δz。 其次,在摄像机标定过程 中,确定世界坐标系 X 轴和Y 轴方向,如图5(d)所示;并利用(6)、(7)式把相对于摄像机坐标系的点云映射到依据靶标板所建立的世界坐标系中,如图5(e)所示。 最后,利用参考测量限定目标物体放置 区域,实现目标点云分割,如图5(f)所示。 在图像阈值和靶标世界坐标系的基础上可采用点云空间投影进行点云分割,首先测量并确定目标物体的待放置空间区域,把靶标放置在待测量物体的区域内,确定X轴偏移量Δx、Y 轴偏移量 Δy 和靶标板厚度 Δz。 其次,在摄像机标定过程中,确定世界坐标系X 轴和Y 轴方向。 利用(9)式把点云视角变换至场景俯视角度,利用(13)、(14)式把三维点云映射到二维图像中,如图5(g)所示。 利用形态学对获得的二维图像进行膨胀处理,如图5(h)所示, 利 用连通域方法进行感兴趣区域图像分割,如图5(i) 所示。 最后根据建立的点云与像素之间的映射关系, 还原图像阈值分割所对应的点云区域,如图5(j)所示。 4.2 结果对比分析 点云分割实验分别采用图像阈值分割 (算法 I)、靶标坐标系(算法II)、空间投影(算法III)以及与 Halcon中的基于区域的方法(算法Ⅳ)进行对比分析,对不同算法的参考点云总数和分割后点云数 进行对比,如表1所示。 4种方法实现的点云分割(场景1#~3#的点云区域)结果如图6所示。利用图像阈值和点云映 射关系实现的点云分割如图6(a)~(c)所示。立体相机的外参数误差和相机非线性映射关系等导致摄 像机坐标系下的点云坐标与图像像素坐标的对应关系存在一定的误差。与此同时,点云分割密度直接受图像阈值分割好坏的影响,在场景复杂且感兴趣区域阈值分割较差的情况下,点云分割不理想。采用靶标世界坐标系和点云区域模型实现的点云分割 如图6(d)~ (f)所示。 根据靶标坐标系的点云分割,需要测量感兴趣区域的物理空间区域和应用摄像机RGB图像建立相应的参考坐标系,根据测量目 标区域范围可在不改变点云密度的情况下快速有效 地分割出目标物点云。 基于空间投影的点云分割方 法,在目标物区域建立世界坐标系,利用坐标系变换 改变目标物点云投射视角,以突出目标物的阈值特征,实现点云分割,如图6(g)~(i)所示。 基于空间投影的点云分割结果边界清晰且质量较佳,但由于其融合图像阈值和靶标坐标系算法,其执行速度相 对慢一些。 Halcon视觉开发平台中基于区域的点云分割方法,采用点云三角化后,根据区域的点、直径、三角等结构元素数值选定点云区域,结果如图 6(j)~(l)所示。推荐阅读
【视觉】3D视觉技术,已经悄悄走进你的生活
【视觉】先进驾驶辅助系统中基于单目视觉的场景深度估计方法
【行业】2020年中国机器视觉发展前景分析
【视觉】煤矸智能分选的机器视觉识别方法与优化
【科普知识】神经网络发展简史:从浅层神经网络到深度学习
小姐姐为你介绍计算机视觉的5大应用
【视觉】上海交大提出少样本图像生成新方法F2GAN
【行业信息】小米“智能工厂”来了,1秒生产1台手机
【视觉知识】基于机器视觉的水果品质检测综述
【行业信息】浅谈计算机视觉技术进展及其新兴应用
【行业信息】机器视觉应用大盘点
【有点意思】发动机点火器怎么工作的?【视觉知识】全局快门和卷帘快门有什么区别?
【视觉知识】无需模板匹配的刹车片表面缺陷图像检测方法
【视觉知识】基于机器视觉的奶牛发情行为自动识别方法
【视觉知识】TOF 3D视觉技术
【视觉知识】机器人视觉3D成像方法与特点
声明:部分图片及内容来源于网络。仅供读者学习交流之目的,如有不妥,请联系删除。
我知道你在看哟