import torch
from matplotlib import pyplot as plt
from torch import nn, optim
# from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from tqdm import tqdm
from matplotlib.ticker import MaxNLocator
# 超参数
batch_size = 256 # 批大小
learning_rate = 0.0001 # 学习率
epochs = 20 # 迭代次数
channels = 1 # 图像通道大小
# 数据集下载和预处理
transform = transforms.Compose([transforms.ToTensor(), # 将图片转换成PyTorch中处理的对象Tensor,并且进行标准化0-1
transforms.Normalize([0.5], [0.5])]) # 归一化处理
path = './data/' # 数据集下载后保存的目录
# 下载训练集和测试集
trainData = datasets.MNIST(path, train=True, transform=transform, download=True)
testData = datasets.MNIST(path, train=False, transform=transform)
# 处理成data loader
trainDataLoader = torch.utils.data.DataLoader(dataset=trainData, batch_size=batch_size, shuffle=True) # 批量读取并打乱
testDataLoader = torch.utils.data.DataLoader(dataset=testData, batch_size=batch_size)
# 开始构建cnn模型
class cnn(torch.nn.Module):
def __init__(self):
super(cnn, self).__init__()
self.model = torch.nn.Sequential(
# The size of the picture is 28*28
torch.nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2),
# The size of the picture is 14*14
torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2),
#
# The size of the picture is 7*7
torch.nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
# torch.nn.MaxPool2d(kernel_size=2, stride=2),
# The size of the picture is 7*7
torch.nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
# torch.nn.MaxPool2d(kernel_size=2, stride=2),
torch.nn.Flatten(),
torch.nn.Linear(in_features=7 * 7 * 256, out_features=512),
torch.nn.ReLU(),
torch.nn.Dropout(0.2), # 抑制过拟合 随机丢掉一些节点
torch.nn.Linear(in_features=512, out_features=10),
# torch.nn.Softmax(dim=1) # pytorch的交叉熵函数其实是softmax-log-NLL 所以这里的输出就不需要再softmax了
)
def forward(self, input):
output = self.model(input)
return output
# 选择模型
model = cnn()
# GPU可用时转到cuda上执行
if torch.cuda.is_available():
model = model.cuda()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss() # 选用交叉熵函数作为损失函数
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# optimizer = optim.Adam(model.parameters())
# 训练模型并存储训练时的指标
epoch = 1
history = {'Train Loss': [],
'Test Loss': [],
'Train Acc': [],
'Test Acc': []}
for epoch in range(1, epochs+1):
processBar = tqdm(trainDataLoader, unit='step')
model.train(True)
train_loss, train_correct = 0, 0
for step, (train_imgs, labels) in enumerate(processBar):
if torch.cuda.is_available(): # GPU可用
train_imgs = train_imgs.cuda()
labels = labels.cuda()
model.zero_grad() # 梯度清零
outputs = model(train_imgs) # 输入训练集
loss = criterion(outputs, labels) # 计算损失函数
predictions = torch.argmax(outputs, dim=1) # 得到预测值
correct = torch.sum(predictions == labels)
accuracy = correct / labels.shape[0] # 计算这一批次的正确率
loss.backward() # 反向传播
optimizer.step() # 更新优化器参数
processBar.set_description("[%d/%d] Loss: %.4f, Acc: %.4f" % # 可视化训练进度条设置
(epoch, epochs, loss.item(), accuracy.item()))
# 记录下训练的指标
train_loss = train_loss + loss
train_correct = train_correct + correct
# 当所有训练数据都进行了一次训练后,在验证集进行验证
if step == len(processBar) - 1:
tst_correct, totalLoss = 0, 0
model.train(False) # 开始测试
model.eval() # 固定模型的参数并在测试阶段不计算梯度
with torch.no_grad():
for test_imgs, test_labels in testDataLoader:
if torch.cuda.is_available():
test_imgs = test_imgs.cuda()
test_labels = test_labels.cuda()
tst_outputs = model(test_imgs)
tst_loss = criterion(tst_outputs, test_labels)
predictions = torch.argmax(tst_outputs, dim=1)
totalLoss += tst_loss
tst_correct += torch.sum(predictions == test_labels)
train_accuracy = train_correct / len(trainDataLoader.dataset)
train_loss = train_loss / len(trainDataLoader) # 累加loss后除以步数即为平均loss值
test_accuracy = tst_correct / len(testDataLoader.dataset) # 累加正确数除以样本数即为验证集正确率
test_loss = totalLoss / len(testDataLoader) # 累加loss后除以步数即为平均loss值
history['Train Loss'].append(train_loss.item()) # 记录loss和acc
history['Train Acc'].append(train_accuracy.item())
history['Test Loss'].append(test_loss.item())
history['Test Acc'].append(test_accuracy.item())
processBar.set_description("[%d/%d] Loss: %.4f, Acc: %.4f, Test Loss: %.4f, Test Acc: %.4f" %
(epoch, epochs, train_loss.item(), train_accuracy.item(), test_loss.item(),
test_accuracy.item()))
processBar.close()
# 对测试Loss进行可视化
plt.plot(history['Test Loss'], color='red', label='Test Loss')
plt.plot(history['Train Loss'], label='Train Loss')
plt.legend(loc='best')
plt.grid(True)
plt.xlabel('Epoch')
plt.xlim([0, epoch])
plt.gca().xaxis.set_major_locator(MaxNLocator(integer=True))
plt.ylabel('Loss')
plt.title('Train and Test LOSS')
plt.legend(loc='upper right')
plt.savefig('LOSS')
plt.show()
# 对测试准确率进行可视化
plt.plot(history['Test Acc'], color='red', label='Test Acc')
plt.plot(history['Train Acc'], label='Train Acc')
plt.legend(loc='best')
plt.grid(True)
plt.xlabel('Epoch')
plt.xlim([0, epoch])
plt.gca().xaxis.set_major_locator(MaxNLocator(integer=True))
plt.ylabel('Accuracy')
plt.title('Train and Test ACC')
plt.legend(loc='lower right')
plt.savefig('ACC')
plt.show()
torch.save(model, './model.pth')