pandas.dropna/isnull/fillna/astype的用法

删除表中的某一行或者某一列更明智的方法是使用drop,它不改变原有的df中的数据,而是返回另一个dataframe来存放删除后的数据。

(1)清理无效数据

df[df.isnull()]  #返回的是个true或false的Series对象(掩码对象),进而筛选出我们需要的特定数据。 
df[df.notnull()]  

df.dropna()     #将所有含有nan项的row删除 
df.dropna(axis=1,thresh=3)  #将在列的方向上三个为NaN的项删除 
df.dropna(how='ALL')        #将全部项都是nan的row删除

此处:print( data.dropna()) 和 print(data[data.notnull()]) 结果一样

(2)填充无效值

df.fillna(0) 
df.fillna({1:0, 2:0.5})         #对第一列nan值赋0,第二列赋值0.5 
df.fillna(method='ffill')   #在列方向上以前一个值作为值赋给Na

注意:凡是会对原数组作出修改并返回一个新数组的,往往都有一个 inplace可选参数。如果手动设定为True(默认为False),那么原数组直接就被替换。也就是说,采用inplace=True之后,原数组名(如2和3情况所示)对应的内存值直接改变;

而采用inplace=False之后,原数组名对应的内存值并不改变,需要将新的结果赋给一个新的数组或者覆盖原数组的内存位置(如1情况所示)。

(3)astype函数的使用:数据类型转换

df['Name'] = df['Name'].astype(np.datetime64)

DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

 

转载于:https://www.cnblogs.com/nxf-rabbit75/p/9298110.html

你可能感兴趣的:(python)