Pytorch加载模型

1、初始化

 #使用GPU或者CPU
device = torch.device('cuda' if cfg.CUDA else 'cpu’)
#直接使用GPU
device = torch.cuda.current_device() 

2、加载模型

#载入GPU
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device)) 
 #载入CPU
pretrained_dict = torch.load(apretrained_path, map_location=lambda storage,loc:storage.cpu())

3、移除前缀

if "state_dict" in pretrained_dict.keys():
        pretrained_dict = remove_prefix(pretrained_dict['state_dict'],
                                        'module.')
    else:
        pretrained_dict = remove_prefix(pretrained_dict, 'module.')

对应的remove_prefix函数为:

def remove_prefix(state_dict, prefix):
    ''' Old style model is stored with all names of parameters
    share common prefix 'module.' '''
    #logger.info('remove prefix \'{}\''.format(prefix))
    f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
    return {f(key): value for key, value in state_dict.items()}

4.检查键完整性:即判断当前构建的模型参数与待加载的模型参数是否匹配

check_keys(model, pretrained_dict)

对应的check_keys函数为:

def check_keys(model, pretrained_state_dict):
    ckpt_keys = set(pretrained_state_dict.keys())
    model_keys = set(model.state_dict().keys())
    used_pretrained_keys = model_keys & ckpt_keys
    unused_pretrained_keys = ckpt_keys - model_keys
    missing_keys = model_keys - ckpt_keys
    # filter 'num_batches_tracked'
    missing_keys = [x for x in missing_keys
                    if not x.endswith('num_batches_tracked')]
    if len(missing_keys) > 0:
        logger.info('[Warning] missing keys: {}'.format(missing_keys))
        logger.info('missing keys:{}'.format(len(missing_keys)))
    if len(unused_pretrained_keys) > 0:
        logger.info('[Warning] unused_pretrained_keys: {}'.format(
            unused_pretrained_keys))
        logger.info('unused checkpoint keys:{}'.format(
            len(unused_pretrained_keys)))
    logger.info('used keys:{}'.format(len(used_pretrained_keys)))
  
    assert len(used_pretrained_keys) > 0, \
        'check_key load NONE from pretrained checkpoint'
    return True

5.装载参数

model.load_state_dict(pretrained_dict, strict=False)

链接: PYSOT.

你可能感兴趣的:(python,pytorch)