1、初始化
#使用GPU或者CPU
device = torch.device('cuda' if cfg.CUDA else 'cpu’)
#直接使用GPU
device = torch.cuda.current_device()
2、加载模型
#载入GPU
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
#载入CPU
pretrained_dict = torch.load(apretrained_path, map_location=lambda storage,loc:storage.cpu())
3、移除前缀
if "state_dict" in pretrained_dict.keys():
pretrained_dict = remove_prefix(pretrained_dict['state_dict'],
'module.')
else:
pretrained_dict = remove_prefix(pretrained_dict, 'module.')
对应的remove_prefix函数为:
def remove_prefix(state_dict, prefix):
''' Old style model is stored with all names of parameters
share common prefix 'module.' '''
#logger.info('remove prefix \'{}\''.format(prefix))
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
return {f(key): value for key, value in state_dict.items()}
4.检查键完整性:即判断当前构建的模型参数与待加载的模型参数是否匹配
check_keys(model, pretrained_dict)
对应的check_keys函数为:
def check_keys(model, pretrained_state_dict):
ckpt_keys = set(pretrained_state_dict.keys())
model_keys = set(model.state_dict().keys())
used_pretrained_keys = model_keys & ckpt_keys
unused_pretrained_keys = ckpt_keys - model_keys
missing_keys = model_keys - ckpt_keys
# filter 'num_batches_tracked'
missing_keys = [x for x in missing_keys
if not x.endswith('num_batches_tracked')]
if len(missing_keys) > 0:
logger.info('[Warning] missing keys: {}'.format(missing_keys))
logger.info('missing keys:{}'.format(len(missing_keys)))
if len(unused_pretrained_keys) > 0:
logger.info('[Warning] unused_pretrained_keys: {}'.format(
unused_pretrained_keys))
logger.info('unused checkpoint keys:{}'.format(
len(unused_pretrained_keys)))
logger.info('used keys:{}'.format(len(used_pretrained_keys)))
assert len(used_pretrained_keys) > 0, \
'check_key load NONE from pretrained checkpoint'
return True
5.装载参数
model.load_state_dict(pretrained_dict, strict=False)
链接: PYSOT.