RuntimeError: one of the variables needed for gradient computation has been modified by an inplace

代码中包含三个需要更新的网络,A、B互相利用彼此的输出计算一部分不需要向对方传递的损失,因此,两部分涉及到的对方的变量都需要:

X.detach()

否则,当更新完成B网络之后,再计算A的损失并更新A时,会报错:

one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [1, 32, 3, 3]] is at version 2; expected version 1 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

首先更新A网络,虽然后续不需要用到此部分损失来更新B、C,但依然要:

loss_A.backward(retain_graph=True)

否则会报错:

Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved tensors after calling backward.

最后加上了detach,并且最先更新A网络的参数。虽然问题解决了,但不明白为什么当A放在最后更新时,就算先zero_grad,也会报第一个错误。。求答疑QAQ)

你可能感兴趣的:(pytorch编程,深度学习,python,人工智能,pytorch)