【数学】双根号求值域问题

∣   双根号求值域问题     Nightguard   Series.   ∣ \begin{vmatrix}\Huge{\textsf{ 双根号求值域问题 }}\\\texttt{ Nightguard Series. }\end{vmatrix}  双根号求值域问题  Nightguard Series. 


f ( x ) = 3 x − 6 + 3 − x f(x)=\sqrt{3x-6}+\sqrt{3-x} f(x)=3x6 +3x 的值域。

tips:请时刻小心定义域









♣ 1. 求导 \clubsuit 1.\texttt{求导} 1.求导

f ′ ( x ) = − 3 2 3 x − 6 + 1 2 3 − x = − 1 2 3 3 − x − 3 x − 6 ( 3 x − 6 ) ( 3 − x ) f'(x)=-\frac{3}{2\sqrt{3x-6}}+\frac{1}{2\sqrt{3-x}}=-\frac{1}{2}{\frac{3\sqrt{3-x}-\sqrt{3x-6}}{\sqrt{(3x-6)(3-x)}}} f(x)=23x6 3+23x 1=21(3x6)(3x) 33x 3x6

f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0 , 则 3 3 − x 0 − 3 x 0 − 6 = 0 ⇒ x 0 = 11 4 3\sqrt{3-x_0}-\sqrt{3x_0-6}=0 \Rightarrow x_0=\frac{11}{4} 33x0 3x06 =0x0=411

f ( x ) f(x) f(x) [ 2 , x 0 ) [2,x_0) [2,x0) 上单增,在 ( x 0 , 3 ] (x_0,3] (x0,3] 上单减

代入得 f ( x ) m a x = f ( x 0 ) = 2 , f ( x ) m i n = f ( 2 ) = 1. f(x)_{max}=f(x_0)=2,f(x)_{min}=f(2)=1. f(x)max=f(x0)=2,f(x)min=f(2)=1.


♣ 2. 三角换元 \clubsuit 2.\texttt{三角换元} 2.三角换元

f ( x ) = 3 x − 6 + 3 − x = 3 x − 2 + 3 − x f(x)=\sqrt{3x-6}+\sqrt{3-x}=\sqrt{3}\sqrt{x-2}+\sqrt{3-x} f(x)=3x6 +3x =3 x2 +3x

a = x − 2 , b = 3 − x , a=\sqrt{x-2},b=\sqrt{3-x}, a=x2 ,b=3x , a 2 + b 2 = 1 a^2+b^2=1 a2+b2=1 (三角换元的标志)

a = sin ⁡ θ , b = cos ⁡ θ a=\sin \theta, b=\cos \theta a=sinθ,b=cosθ

f ( x ) = 3 a + b = 3 sin ⁡ θ + cos ⁡ θ = 2 sin ⁡ ( θ + π 6 ) f(x)=\sqrt{3}a+b=\sqrt{3}\sin\theta + \cos \theta =2\sin(\theta+\frac{\pi}{6}) f(x)=3 a+b=3 sinθ+cosθ=2sin(θ+6π)

∵ a , b > 0 \because a,b>0 a,b>0 ,不妨令 θ ∈ [ 0 , π 2 ] \theta\in[0,\frac{\pi}{2}] θ[0,2π]

θ = π 3 \theta=\frac{\pi}{3} θ=3π 时取到最大值,

a = 3 2 , b = 1 2 ⇒ f ( x ) m a x = 2 , x = 11 4 ; a=\frac{\sqrt{3}}{2},b=\frac{1}{2} \Rightarrow f(x)_{max}=2,x=\frac{11}{4}; a=23 ,b=21f(x)max=2,x=411;

θ = 0 \theta=0 θ=0 时取到最小值,

a = 0 , b = 1 ⇒ f ( x ) m i n = 1 , x = 2. a=0,b=1 \Rightarrow f(x)_{min}=1,x=2. a=0,b=1f(x)min=1,x=2.


♣ 3. 向量法 \clubsuit 3.\texttt{向量法} 3.向量法

f ( x ) = 3 x − 6 + 3 − x = 3 x − 2 + 3 − x f(x)=\sqrt{3x-6}+\sqrt{3-x}=\sqrt{3}\sqrt{x-2}+\sqrt{3-x} f(x)=3x6 +3x =3 x2 +3x

a ⃗ = ( 3 , 1 ) , b ⃗ = ( x − 2 , 3 − x ) \vec{a}=(\sqrt{3},1),\vec{b}=(\sqrt{x-2},\sqrt{3-x}) a =(3 ,1),b =(x2 ,3x ) ,则 a ⃗ ⋅ b ⃗ = f ( x ) \vec{a}\cdot \vec{b}=f(x) a b =f(x)

∵ ( x − 2 ) 2 + ( 3 − x ) 2 = 1 \because (\sqrt{x-2})^2+(\sqrt{3-x})^2=1 (x2 )2+(3x )2=1 为定值

∴ b ⃗ \therefore \vec{b} b 终点的轨迹是一段圆弧。

如图:

【数学】双根号求值域问题_第1张图片
a ⃗ , b ⃗ \vec{a},\vec{b} a ,b 共线时, a ⃗ ⋅ b ⃗ \vec{a}\cdot\vec{b} a b 最大,为 ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ = 2 |\vec{a}|\cdot |{\vec{b}}|=2 a b =2 ,即 f ( x ) m a x = 2 , f(x)_{max}=2, f(x)max=2,

共线时 B B B 在直线 O A OA OA 上, ∴ 3 x − 2 = 3 − x ⇒ x = 11 4 ; \therefore \sqrt{3}\sqrt{x-2}=\sqrt{3-x} \Rightarrow x=\frac{11}{4}; 3 x2 =3x x=411;

b ⃗ = ( 0 , 1 ) \vec{b}=(0,1) b =(0,1) 时, a ⃗ ⋅ b ⃗ \vec{a}\cdot\vec{b} a b 最小,为 ∣ a ⃗ ∣ ∣ b ⃗ ∣ ⋅ π 3 = 1 |\vec{a}||{\vec{b}}|\cdot{\frac{\pi}{3}}=1 a b 3π=1 ,即 f ( x ) m i n = 1 f(x)_{min}=1 f(x)min=1 ,此时 x = 2. x=2. x=2.


♣ 4. 线性规划 \clubsuit 4.\texttt{线性规划} 4.线性规划

a = 3 x − 6 , b = 3 − x , a=\sqrt{3x-6},b=\sqrt{3-x}, a=3x6 ,b=3x ,

a 2 + 3 b 2 = 3 ⇒ a 2 3 + b 2 = 1 ( a , b > 0 ) a^2+3b^2=3 \Rightarrow \frac{a^2}{3}+b^2=1 (a,b>0) a2+3b2=33a2+b2=1(a,b>0)

f ( x ) = a + b ⇒ b = − a + f ( x ) f(x)=a+b \Rightarrow b=-a+f(x) f(x)=a+bb=a+f(x)

【数学】双根号求值域问题_第2张图片

如图,即求椭圆在第一象限的部分 C : x 2 3 + y 2 = 1 ( x , y > 0 ) C:\frac{x^2}{3}+y^2=1 (x,y>0) C:3x2+y2=1(x,y>0) l : y = − x + m l:y=-x+m l:y=x+m 有交点时 m m m 的范围。

l l l C C C 相切时 m m m 最大,

C C C 的切线方程: x 0 x 3 + y 0 y = 1 \frac{x_0x}{3}+y_0y=1 3x0x+y0y=1

∵ k = − 1 ∴ x 0 3 = y 0 , \because k=-1 \therefore \frac{x_0}{3}=y_0, k=13x0=y0, C C C 方程联立得切点: P ( 3 2 , 1 2 ) P(\frac{3}{2},\frac{1}{2}) P(23,21)

∴ l : y = − x + 2 = 0 , m m a x = 2 , \therefore l:y=-x+2=0,m_{max}=2, l:y=x+2=0,mmax=2, f ( x ) m a x = 2 , f(x)_{max}=2, f(x)max=2,

a = 3 2 , b = 1 2 ⇒ x = 11 4 . a=\frac{3}{2},b=\frac{1}{2}\Rightarrow x=\frac{11}{4}. a=23,b=21x=411.

l l l C C C 交点为 ( 1 , 0 ) (1,0) (1,0) m m m 最小,即 f ( x ) m i n = 1 , f(x)_{min}=1, f(x)min=1,

a = 0 , b = 1 ⇒ x = 2. a=0,b=1 \Rightarrow x=2. a=0,b=1x=2.

或者,令 a = x − 2 , b = 3 − x , a=\sqrt{x-2},b=\sqrt{3-x}, a=x2 ,b=3x ,

a 2 + b 2 = 1 , f ( x ) = 3 a + b ⇒ b = − 3 a + f ( x ) a^2+b^2=1,f(x)=\sqrt{3}a+b \Rightarrow b=-\sqrt{3}a+f(x) a2+b2=1,f(x)=3 a+bb=3 a+f(x)

像这样化成圆再做的话也可以。(其实相当于仿射变换)


♣ 5. 柯西不等式 \clubsuit 5.\texttt{柯西不等式} 5.柯西不等式

3 x − 6 + 3 − x = 3 x − 2 + 1 ⋅ 3 − x ≤ ( 3 + 1 ) ( 3 − x + x − 2 ) = 2. \sqrt{3x-6}+\sqrt{3-x}=\sqrt{3}\sqrt{x-2}+1\cdot \sqrt{3-x} \leq\sqrt{(3+1)(3-x+x-2)}=2. 3x6 +3x =3 x2 +13x (3+1)(3x+x2) =2.

当且仅当 3 1 = x − 2 3 − x \frac{\sqrt{3}}{1}=\frac{{\sqrt{x-2}}}{{\sqrt{3-x}}} 13 =3x x2 时取到最大值,解得 x = 11 4 x=\frac{11}{4} x=411

在知道函数单调性的前提下,代入端点求最小值


♣ 6. n元均值不等式 \clubsuit 6.\texttt{n元均值不等式} 6.n元均值不等式

3 x − 6 + 3 − x \sqrt{3x-6}+\sqrt{3-x} 3x6 +3x

= 3 3 x − 2 + 3 3 x − 2 + 3 3 x − 2 + 3 − x =\frac{\sqrt{3}}{3}\sqrt{x-2}+\frac{\sqrt{3}}{3}\sqrt{x-2}+\frac{\sqrt{3}}{3}\sqrt{x-2}+\sqrt{3-x} =33 x2 +33 x2 +33 x2 +3x

Σ a n n ≤ Σ a n 2 n \frac{\Sigma a_n}{n} \leq \sqrt{\frac{\Sigma a_n^2}{n}} nΣannΣan2

原式 ≤ 4 [ ( 3 3 x − 2 ) 2 + ( 3 3 x − 2 ) 2 + ( 3 3 x − 2 ) 2 + ( 3 − x ) 2 ] ) = 2 \leq\sqrt{4[{(\frac{\sqrt{3}}{3}\sqrt{x-2})^2+(\frac{\sqrt{3}}{3}\sqrt{x-2})^2+(\frac{\sqrt{3}}{3}\sqrt{x-2})^2+(\sqrt{3-x})^2]})}=2 4[(33 x2 )2+(33 x2 )2+(33 x2 )2+(3x )2]) =2

当且仅当 3 3 x − 2 = 3 − x \frac{\sqrt{3}}{3}\sqrt{x-2}=\sqrt{3-x} 33 x2 =3x ,即 x = 11 4 x=\frac{11}{4} x=411 时取到最大值

在知道函数单调性的前提下,代入端点求最小值


♣ 7. 通解 \clubsuit 7.\texttt{通解} 7.通解

https://www.bilibili.com/video/BV1mU4y1Y7Wh

8.开挂

【数学】双根号求值域问题_第3张图片

只是想展示函数的图像而已 有个直观印象

你可能感兴趣的:(#数学,数学)