近似误差:对现有训练集的训练误差,关注训练集,如果近似误差过小可能会出现过拟合的现象,对现有的训练集能有很好的预测,但是对未知的测试样本将会出现较大偏差的预测。模型本身不是最接近最佳模型
估计误差:可以理解为对测试集的测试误差,关注测试集,估计误差小说明对未知数据的预测能力好,模型本身最接近最佳模型
在实际应用中,K值一般取一个比较小的数值,例如采用交叉验证法(简单来说,就是把训练数据在分成两组:训练集和验证集)来选择最优的K值。对这个简单的分类器进行泛化,用核方法把这个线性模型扩展到非线性的情况,具体方法是把低维数据集映射到高维特征空间
实现k近邻法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索。这在特征空间的维数大及训练数据容量大时尤其必要
k近邻法最简单的实现是线性扫描(穷举搜索),即要计算输入实例与每一个训练实例的距离。计算并存储好以后,再查找K近邻,当训练集很大时,计算非常耗时
为了提高kNN搜索的效率,可以考虑使用特殊的结构存储训练数据,以减小计算距离的次数
根据KNN每次需要预测一个点时,我们都需要计算训练数据集里每个点到这个点的距离,然后选出距离最近的k个点进行投票。当数据集很大时,这个计算成本非常高,针对N个样本,D个特征的数据集,其算法复杂度为O(DN^2)
kd树(K-dimension tree):是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构,为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算
基本原理:如果A和B距离很远,B和C距离很近,那么A和C的距离也很远。有了这个信息,就可以在合适的时候跳过距离远的点,这样优化后的算法复杂度可降低到O(DNlog(N))
黄色的点作为根节点,上面的点归左子树,下面的点归右子树,接下来再不断地划分,分割的那条线叫做分割超平面(splitting hyperplane),在一维中是一个点,二维中是线,三维的是面
黄色节点就是Root节点,下一层是红色,再下一层是绿色,再下一层是蓝色(垂直切)
1.树的建立;
2.最近邻域搜索(Nearest-Neighbor Lookup):kd树是一种二叉树,表示对k维空间的一个划分,构造kd树相当于不断地用垂直于坐标轴的超平面将K维空间切分,构成一系列的K维超矩形区域。kd树的每个结点对应于一个k维超矩形区域。利用kd树可以省去对大部分数据点的搜索,从而减少搜索的计算量
类比“二分查找”:给出一组数据:[9 1 4 7 2 5 0 3 8],要查找8。若挨个查找(线性扫描),需将所有数据集都遍历一遍。若先排序为:[0 1 2 3 4 5 6 7 8 9],按前一种方式进行了很多没有必要的查找,现若以5为分界点,则数据集被划分为了左右两个“簇” [0 1 2 3 4]和[6 7 8 9]
因此,没必要进入第一个簇,可直接进入第二个簇进行查找。把二分查找中的数据点换成k维数据点,这样的划分就变成了用超平面对k维空间的划分。空间划分就是对数据点进行分类,“挨得近”的数据点就在一个空间里面
kd树中每个节点是一个向量,和二叉树按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:
第一个问题简单的解决方法可以是随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分,这样问题2也得到了解决
给定一个二维空间数据集:T={(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},构造一个平衡kd树
根结点对应包含数据集T的矩形,选择x轴,6个数据点的x坐标中位数是6,这里选最接近的(7,2)点,以平面x=7将空间分为左、右两个子矩形(子结点),接着左矩形以y=4分为两个子矩形(左矩形中{(2,3),(5,4),(4,7)}点的y坐标中位数正好为4),右矩形以y=6分为两个子矩形,如此递归,最后得到如下图所示的特征空间划分和kd树,具体步骤如下
假设标记为星星的点是测试点, 绿色的点是找到的近似点,在回溯过程中,需要用到一个队列,存储需要回溯的点,在判断其他子节点空间中是否有可能有距离查询点更近的数据点时,做法是以查询点为圆心,以当前的最近距离为半径画圆,这个圆称为候选超球(candidate hypersphere),如果圆与回溯点的轴相交,则需要将轴另一边的节点都放到回溯队列里面来
查找点(2.1,3.1)
查找点(2,4.5)
首先通过二叉树搜索(比较待查询节点和分裂节点的分裂维的值,小于等于就进入左子树分支,大于就进入右子树分支直到叶子结点),顺着“搜索路径”很快能找到最近邻的近似点,也就是与待查询点处于同一个子空间的叶子结点
然后再回溯搜索路径,并判断搜索路径上的结点的其他子结点空间中是否可能有距离查询点更近的数据点,如果有可能,则需要跳到其他子结点空间中去搜索(将其他子结点加入到搜索路径)
重复这个过程直到搜索路径为空
学习导航:http://xqnav.top/