相关申明
源代码地址
@article{Ranftl2021, author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun}, title = {Vision Transformers for Dense Prediction}, journal = {ArXiv preprint}, year = {2021}, }
@article{Ranftl2020, author = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun}, title = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year = {2020}, }
小赵在ubuntu18.04系统下进行论文的代码实践,简单流程如下:
1.下载github项目到本地
git clone https://github.com/isl-org/DPT.git
2.根据提示,下载model weights——Monodepth & Segmentation,并将下载的.pt文件放置到DPT项目的weights文件夹内
3. 通过anaconda3创建相关环境
conda create -n DPT python=3.7
source activate DPT
cd DPT
conda install --yes --file requirements.txt
或
pip3 install -r requirements.txt
Python 3.7, PyTorch 1.8.0, OpenCV 4.5.1, and timm 0.4.5 均通过requirements.txt完成安装
4.运行
python run_monodepth.py
python run_segmentation.py
5.结果
结果分别放置在对应的output_monodepth 和 output_semseg
6.拓展
将Monodepth微调后作用在KITTI,下载对应.pt文件,放置到weights
将Monodepth微调后作用在NYUv2,下载对应.pt文件,放置到weights
执行
python run_monodepth -t [dpt_hybrid_kitti|dpt_hybrid_nyu]
python run_monodepth.pt -t dpt_hybrid_kitti
python run_monodepth.pt -t dpt_hybrid_nyu