- 学生行为习惯画像可视分析平台
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
学生行为习惯,画像分析,可视化,机器学习,数据挖掘,教育科技1.背景介绍随着教育信息化进程的不断加速,海量教育数据正在被生成和积累。这些数据蕴含着丰富的学生行为信息,例如学习时间、学习内容、学习方式、学习效果等。有效挖掘和分析这些数据,能够帮助教育工作者深入了解学生的学习习惯和行为模式,从而为个性化教学、精准指导和学习效果提升提供重要支撑。然而,传统的教育数据分析方法往往局限于简单的统计描述,难以
- 蚂蚁集团可转正实习算法岗内推-自然语言
飞300
业界资讯自然语言处理
具备极佳的工程实现能力,精通C/C++、Java、Pvthon、Perl等至少一门语言:对目前主流的深度学习平台:tensorflow、pytorch、mxnet等,至少对其中一个有上手经验;熟悉深度学习以及常见机器学习算法的原理与算法,能熟练运用聚类、分类、回归、排序等模型解决有挑战性的问题,有大数据处理的实战经验;有强烈求知欲,对人工智能领域相关技术有热情,内推链接:https://u.ali
- 深圳传音控股AI算法岗内推
飞300
人工智能pythonjava业界资讯
1扎实的数学基础,熟练掌握机器学习相关的数学知识。2熟悉常用的机器学习算法,掌握常用的深度学习模型与编程实践。3熟悉Pytorch或TensorFlow等深度学习框架,有一定项目经验。4良好的沟通协调能力,执着的专业精神。5参与部门AI创新项目,包括自动化测试平台、BPM流程管理等项目开发登录链接:transsion.zhiye.com/campus/jobs填写我的推荐码:EVHPB3投递,简历
- 【北上广深杭大厂AI算法面试题】深度学习篇...MobileNet 系列网络发展与高效性分析(附代码)(二)
努力毕业的小土博^_^
AI算法题库人工智能算法深度学习卷积神经网络
【北上广深杭大厂AI算法面试题】深度学习篇…MobileNet系列网络发展与高效性分析(附代码)(二)【北上广深杭大厂AI算法面试题】深度学习篇…MobileNet系列网络发展与高效性分析(附代码)(二)文章目录【北上广深杭大厂AI算法面试题】深度学习篇...MobileNet系列网络发展与高效性分析(附代码)(二)MobileNet系列网络发展与高效性分析(附代码)4.MobileNetV2(2
- Docker中GPU的使用指南
俞兆鹏
云原生实践docker容器运维
在当今的计算领域,GPU(图形处理单元)已经成为了加速各种计算密集型任务的关键硬件,特别是在深度学习、科学模拟和高性能计算等领域。Docker作为流行的容器化平台,允许开发者将应用程序及其依赖打包成一个可移植的容器,在不同的环境中运行。当需要在Docker容器中利用GPU的计算能力时,我们需要进行一些特定的配置和设置。本文将详细介绍如何在Docker中使用GPU,从环境准备到实际应用,帮助你充分利
- 基于NLP的客户意见分析:从数据到洞察
Echo_Wish
Python算法Python笔记自然语言处理人工智能
友友们好!我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发等。●实战案例:通过丰富的实战案例,带你一步步实现
- (视频演示)基于OpenCV的实时视频跟踪火焰识别软件V1.0源码及exe下载
是刃小木啦~
opencv人工智能计算机视觉
本文介绍了基于OpenCV的实时视频跟踪火焰识别软件,该软件通过先进的图像处理技术实现对实时视频中火焰的检测与跟踪,同时支持导入图片进行火焰识别。主要功能包括相机选择、实时跟踪和图片模式。软件适用于多种场合,用于保障人民生命财产安全。源码及exe文件可通过蓝奏云网盘下载。软件简介《基于OpenCV的实时视频跟踪火焰识别软件》是一款创新的计算机视觉应用软件,旨在通过先进的图像处理技术实现对实时视频中
- OpenCV 100道面试题及参考答案(7万字长文)
大模型大数据攻城狮
大厂面试大厂面经android面试计算机视觉opencv实时互动webrtc
OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了丰富的函数和工具,用于处理图像和视频。OpenCV最初由英特尔公司开发,现在由一个开源社区维护和发展。主要功能和用途OpenCV的主要功能包括图像和视频处理、特征提取、目标检测、人脸识别、物体跟踪等。它可以用于各种领域,如机器人技术、医学影像、安全监控、自动驾驶等。在图像
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- 【学习笔记5】Linux下cuda、cudnn、pytorch版本对应关系
longii11
linuxpytorch运维
一、cuda和cudnnNVIDIACUDAToolkit(CUDA)为创建高性能GPU加速应用程序提供了一个开发环境。借助CUDA工具包,您可以在GPU加速的嵌入式系统、桌面工作站、企业数据中心、基于云的平台和HPC超级计算机上开发、优化和部署您的应用程序。该工具包包括GPU加速库、调试和优化工具、C/C++编译器以及用于部署应用程序的运行时库。全球的深度学习研究人员和框架开发人员都依赖cuDN
- 使用OpenCV和Python将图像读取为RGB
UixnContext
opencvpython人工智能OpenCV
在计算机视觉和图像处理中,OpenCV是一个广泛使用的开源库,提供了许多功能强大的图像处理工具。其中一个常见的任务是将图像读取为RGB格式,以便进一步处理和分析。在本文中,我将向您展示如何使用OpenCV和Python来实现这个任务。首先,确保您已经安装了OpenCV库。您可以使用以下命令在Python中安装OpenCV:pipinstallopencv-python一旦安装完成,我们可以开始写代
- 人工智能开发趋势
光影少年
人工智能
人工智能开发趋势:未来技术的演进与创新引言人工智能(AI)正在以惊人的速度发展,并在各行各业中发挥越来越重要的作用。从自然语言处理到计算机视觉,从自动化决策到自主学习,AI的发展方向正变得更加智能化、自动化和人性化。本文将探讨当前AI开发的最新趋势,并展望未来的发展方向。1.生成式AI的崛起近年来,生成式AI(如ChatGPT、StableDiffusion、DALL·E)展现出强大的内容创作能力
- 大模型驱动的智能代码生成系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型驱动的智能代码生成系统关键词大模型智能代码生成自然语言处理计算机视觉系统设计与实现摘要本文深入探讨了基于大模型的智能代码生成系统的构建与实现。首先,我们分析了智能代码生成的背景与意义,随后介绍了大模型的基本原理及其在代码生成中的潜力。接着,我们详细阐述了智能代码生成系统的设计与实现过程,包括系统需求分析、架构设计、模型集成与优化等方面。随后,本文通过自然语言处理、计算机视觉和代码生成应用,展
- LLM辅助编程:代码自动生成与优化
AI智能涌现深度研究
计算机软件编程原理与应用实践DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
LLM,代码生成,代码优化,编程辅助,AI编程,自然语言处理,深度学习1.背景介绍随着软件开发的日益复杂化,程序员面临着越来越高的开发压力和效率要求。传统的编程方式依赖于手动编写代码,这不仅耗时费力,而且容易出现错误。近年来,随着深度学习技术的快速发展,基于大型语言模型(LLM)的代码生成和优化技术逐渐成为软件开发领域的新兴热点。LLM是一种强大的人工智能模型,能够理解和生成人类语言。通过训练大量
- 国内开源深度学习框架
we19a0sen
深度学习人工智能
目录一、国内开源深度学习框架1、PaddlePaddle(百度飞浆)2、MindSpore(华为昇思)3、MegEngine(旷视天元)4、OneFlow(一流科技)5、Jittor(清华计图)二、快速入手1、PaddlePaddle(百度飞浆)2、MindSpore(华为昇思)3、MegEngine(旷视天元)4、OneFlow(一流科技)5、Jittor(清华计图)三、基础教程1、Paddle
- Python图片识别脚本:从零开始实现图像识别!
Python_trys
python开发语言编程Python入门Python基础Python识别Python学习
包含编程籽料、学习路线图、爬虫代码、安装包等!【点击领取!】图像识别是计算机视觉领域的一个重要应用,Python凭借其丰富的库和工具,成为了实现图像识别的首选语言之一。本文将带你从零开始,使用Python编写一个简单的图片识别脚本。我们将使用OpenCV和TensorFlow来实现这个功能。1.环境准备在开始之前,我们需要安装一些必要的Python库。你可以使用pip来安装这些库:pipinsta
- 数值计算模型范围的取值与思考--水泵水轮机压力脉动问题--学术论文模式--个人经验总结
lalalaO°C_m
经验分享-高效率!笔记算法数据分析经验分享信号处理
数值计算模型范围的取值与思考——水泵水轮机压力脉动问题目录数值计算模型范围的取值与思考——水泵水轮机压力脉动问题写在前面摘要1研究背景2研究现状3研究方法3.1模型结构参数的选取3.2数值计算方法和参数3.3计算工况参数3.4求解器参数4总结与思考参考文献写在前面压力脉动是引起水力机械振动进而影响水泵水轮机安全运行的重要原因,使用数值模拟模型能够实现高精度且高效的压力脉动特性的计算研究。本文是博主
- 神经网络VS决策树
Persistence is gold
神经网络决策树人工智能
神经网络(NeuralNetworks)和决策树(DecisionTrees)是两种不同的机器学习算法,各自具有独特的优点和适用场景。以下是它们的详细比较:神经网络优点:强大的学习能力:神经网络,尤其是深度神经网络,能够自动学习数据中的复杂特征,可以处理高维和非线性的问题。适用性广泛:神经网络适用于分类、回归、图像处理、语音识别、自然语言处理等多种任务。多层结构:通过增加隐藏层,神经网络可以逐层提
- 【免费收藏】清华大学DeepSeek使用手册合集 600页完整版
周师姐
AI写作学习人工智能pdf
DeepSeek资料链接:https://pan.quark.cn/s/c927326f70c5在人工智能席卷全球的当下,DeepSeek作为前沿深度学习技术,正推动着全面AI时代的到来。今日,特别为大家推荐《DeepSeek:从入门到精通》,本书由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队精心编写。它深度解析DeepSeek的技术核心,详尽阐释其应用场景与操作方法,尤
- 深度神经网络——决策树的实现与剪枝
知来者逆
人工智能dnn决策树人工智能神经网络深度学习机器学习
概述决策树是一种有用的机器学习算法,用于回归和分类任务。“决策树”这个名字来源于这样一个事实:算法不断地将数据集划分为越来越小的部分,直到数据被划分为单个实例,然后对实例进行分类。如果您要可视化算法的结果,类别的划分方式将类似于一棵树和许多叶子。这是决策树的快速定义,但让我们深入了解决策树的工作原理。更好地了解决策树的运作方式及其用例,将帮助您了解何时在机器学习项目中使用它们。决策树的结构决策树的
- YOLOv12改进之A2(区域注意力)
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法
注意力回顾注意力机制作为深度学习领域的核心技术,已广泛应用于自然语言处理和计算机视觉等多个领域。在YOLOv12改进之A2中,注意力机制扮演着关键角色。已有研究成果包括:Transformer架构:引入了自注意力机制,有效捕捉输入序列中的长距离依赖关系。CBAM模块:提出了通道和空间注意力的结合,显著提升了图像分类和目标检测的性能。SENet:引入了通道注意力机制,通过自适应学习特征通道的重要性,
- 【Gaussian Model】高斯分布模型
HP-Succinum
机器学习机器学习算法人工智能
目录高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)1.高斯分布简介2.高斯分布模型用于异常检测(1)训练阶段:估计数据分布(2)检测阶段:计算概率判断异常点3.示例代码4.高斯分布异常检测的优缺点优点缺点5.适用场景6.结论高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)在数据分析和机器学习任务中,异常检测(
- 深入浅出地理解-随机森林与XGBoost模型
HP-Succinum
机器学习随机森林集成学习机器学习
目录一、决策树的不足与集成学习的优势1.1决策树的缺点1.2集成学习:通过集成多个模型提升稳定性二、随机森林:通过多棵决策树减少方差2.1随机森林的基本原理2.2随机森林的优势2.3随机森林的参数调整三、XGBoost:高效且强大的Boosting方法3.1Boosting的基本原理3.2XGBoost的优化3.3XGBoost的优点四、随机森林与XGBoost的对比五、总结在机器学习的实战中,决
- 飞书多维表格+DeepSeek R1:打工人必备的AI神器,效率暴涨1000%![特殊字符]
sherlock__cc
人工智能飞书
导语当飞书多维表格遇上国产最强推理大模型DeepSeekR1,会擦出怎样的火花?本文手把手教你用「零代码」实现批量文案改写、论文精读、视频脚本生成。一、颠覆认知的三大核心优势1.批量处理的工业级效率单次处理1000+条数据,告别传统API逐条调用支持跨表格数据联动(如从CRM系统自动抓取客户需求)实时监控处理进度,失败任务自动重试2.零代码的极简交互无需Python环境配置直接输入自然语言指令(如
- 芯科科技通过全新并发多协议SoC重新定义智能家居连接
电子科技圈
SiliconLabs智能家居边缘计算mcu物联网iot人工智能机器学习
MG26系列SoC现已全面供货,为开发人员提供最高性能和人工智能/机器学习功能致力于以安全、智能无线连接技术,建立更互联世界的全球领导厂商SiliconLabs(亦称“芯科科技”,NASDAQ:SLAB),日前宣布其MG26系列无线片上系统(SoC)现已通过芯科科技及其分销合作伙伴全面供货。作为业界迄今为止最先进、高性能的Matter和并发多协议解决方案,MG26SoC的闪存和RAM容量是芯科科技
- 【Python编程】Python交互式应用框架巅峰对决 —— Streamlit vs Gradio
木亦汐丫
Python编程StreamlitGradioJupyterHuggingFacePandasPyTorchTensorFlow
Streamlit和Gradio都是非常受欢迎的Python交互式应用框架,但在构建Python交互式Web应用时该如何选择?它们各有独特的设计理念和适用场景,以下是基于功能特性、开发效率和应用场景的对比分析:一、核心定位与功能对比特性GradioStreamlit核心目标快速部署机器学习模型交互界面构建数据科学和复杂交互应用输入/输出支持支持文本、图像、音频、视频等基础组件支持更丰富的交互组件(
- JAVA毕设项目-基于SSM框架的百色学院创新实践学分认定系统源码+设计文档
AICurator
毕业设计java课程设计开发语言
文末获取源码+数据库+文档感兴趣的可以先收藏,有毕设问题,项目以及论文撰写等问题都可以和博主沟通,尽最大努力帮助更多的人!百色学院创新实践学分认定系统设计与实现摘要本百色学院创新实践学分认定系统是针对目前实践学分认定的实际需求,从实际工作出发,对过去的实践学分认定系统存在的问题进行分析,结合计算机系统的结构、概念、模型、原理、方法,在计算机各种优势的情况下,采用目前最流行的B/S结构和java中流
- Grok 3能否打破大模型的魔咒?
TGITCIC
AI-大模型的落地之道grokgrok3大模型小模型scalinglaw开源大模型
新模型旧魔咒Grok3的问世,仿佛是科技界的一声惊雷。面对老掉牙的大模型法则,大家不禁要问:这到底意味着什么?以前,一提深度学习就能引出一场血雨腥风,现如今却有人说“没钱也能玩”。这风浪可真是一波未平一波又起。也许这就是科技的魅力:一统江湖的法则瞬间瓦解。缩小与提升大模型不再是唯一的解决方案,大家发现,原来小模型也可以撬动市场。不过,面对如何提升模型的智商,各路英雄却依然不得不面对两个选择:大力度
- 深度学习_第二轮
Humingway
深度学习深度学习人工智能
损失函数对偏置和权重求导,x、y作为常量确实,当进行模型训练时,(x)和(y)分别代表输入特征和对应的输出值,它们以数据点对的形式存在,一个数据集中通常包含多对这样的数据。每一对((x_i),(y_i))代表了数据集中的一个样本。在计算损失函数的梯度(即关于权重的偏导数)时,需要考虑整个数据集中的所有样本。对于每个样本((x_i),(y_i)),我们计算其对损失函数的贡献,并通过求和或平均这些贡献
- 对深度学习中的基本概念—梯度的理解
Humingway
深度学习深度学习人工智能
本文讨论一下对“梯度”的理解。“梯度”是深度学习中基本又非常核心的概念,没有它就没有人工智能的今天。然而,即使抛开令人眼花缭乱的术语(比如sgd、ada、moment、adam)不谈,即使最简单的“梯度”本身,也值得讨论一下。1.提出问题该如何理解梯度?让我们结合具体的例子来体会一下。2.定义例子首先,我们定义一个简单的例子,来模拟一下深度学习的学习过程。已知:有一个正确的数据对(或者叫样本),(
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&