PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1hE411t7RN?p=1
目录
一、准备工作
1、环境配置
2、两个辅助函数
3、三种编程方式
二、数据相关
1、Dataset的使用 - 创建数据集
2、tensorboard的使用 - 可视化
3、transforms的使用 - 图片处理
4、torchvision的使用 - 获取外部数据集
5、dataloader的使用 - 加载数据
三、模型相关
1、Module的使用 - 模型框架
2、convolution layers卷积层 - 特征提取
3、 pooling layers池化层 - 特征降维
4、 non-linear activations非线性激活 - 非线性变换
5、linear layers线性层 - 线性变换
6、sequential贯序模型 - 序列化操作
四、评估及优化
1、损失函数
2、优化器 optimizer
五、实战运行
1、外部模型的使用
2、模型训练流程
3、GPU的使用
4、训练模型测试
anaconda + pycharm + pytorch(以下教程更详细)
人工智能新手环境搭建指南anaconda+pytorch+pycharm_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Kp4y147Rw?spm_id_from=333.337.top_right_bar_window_custom_collection.content.click
dir() 获取包内文件
help() 获取方法说明,方法不加括号
# python console中运行
In[2]:import torch
In[3]:dir(torch) # 获取torch中文件列表
In[4]:help(torch) # 获取torch详细解释
python文件:所有行为一块,一次全部运行
python console:每一行为一块,回车运行
jupyter:任意行为一块,Shift + Enter 运行
from torch.utils.data import Dataset
DataSet 提供一种方式去获取数据及其label
Dataloader 为后续提供不同的数据形式
coding:自定义数据集的实现
from torch.utils.data import Dataset
from PIL import Image
import os
class MyData(Dataset):
def __init__(self, root_dir, label_dir):
self.root_dir = root_dir
self.label_dir = label_dir
self.path = os.path.join(self.root_dir, self.label_dir) # 拼接路径
self.image_path = os.listdir(self.path) # 文件夹生成列表
def __getitem__(self, idx):
img_name = self.image_path[idx]
img_item_path = os.path.join(self.path, img_name) # 图像路径
img = Image.open(img_item_path) # 读取图像
label = self.label_dir
return img, label
def __len__(self):
return len(self.image_path)
root_dir = "dataset/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
ants_dataset = MyData(root_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_label_dir)
train_dataset = ants_dataset + bees_dataset
from torch.utils.tensorboard import SummaryWriter
.add_image(title,图像,step,dataformat) tensorboard中添加图像
.add_scalar(标题,x轴,y轴) tensorboard中添加曲线
coding:add_image、add_scalar的实现
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
writer = SummaryWriter("logs") # 指定事务文件夹
img_path = "dataset2/train/ants_image/0013035.jpg"
img_PIL = Image.open(img_path)
img_array = np.array(img_PIL)
writer.add_image("test", img_array, 1, dataformats='HWC')
for i in range(100):
writer.add_scalar("y=3x", 3*i, i)
writer.close()
# Terminal中获取可视化网址
(pytorch) D:\22\pytorch>tensorboard --logdir=logs --port=6007
from torchvision import transforms
.ToTensor() 将图像转换为tensor类
.Normalize((RGB均值), (RGB方差)) 归一化到[-1,1],缩小数据间差距
.Resize( (高,宽) ) 调整图片尺寸
.Compose( [操作1,操作2] ) 将多个操作整合为列表,传入图像进行操作
.RandomCrop(边长) 随机裁剪
注:图片格式
Image.open() PIL格式
cv2.imread() narrys格式
transforms.ToTensor() tensor格式
coding:各个方法的使用
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
# __call__()通过 对象名(参数) 调用
# 普通函数通过 对象名.方法名(参数) 调用
writer = SummaryWriter("logs")
img = Image.open("dataset2/train/ants_image/0013035.jpg")
# ToTensor
trans_to_tensor = transforms.ToTensor()
img_tensor = trans_to_tensor(img)
writer.add_image("ToTensor", img_tensor)
# Normalize
trans_norm = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
img_norm = trans_norm(img_tensor) # 传入tensor类型
writer.add_image("Normalize", img_norm)
# Resize
trans_resize = transforms.Resize((512, 512))
img_resize = trans_resize(img) # 传入PIL类型,返回PIL类型
img_resize = trans_to_tensor(img_resize)
writer.add_image("Resize", img_resize)
# Compose
trans_resize2 = transforms.Resize(512)
trans_comp = transforms.Compose([trans_resize2, trans_to_tensor]) # 传入实例列表
img_resize2 = trans_comp(img) # 公共参数
writer.add_image("Resize", img_resize2, 1)
# RandomCrop
trans_random = transforms.RandomCrop(512)
trans_comp2 = transforms.Compose([trans_random, trans_to_tensor])
for i in range(10):
img_random = trans_comp2(img)
writer.add_image("RandomCrop", img_random, i)
writer.close()
import torchvision
torchvision.datasets.数据集名( 路径,类型,transform操作,下载) 获取数据集
coding:获取CIFAR10数据集
import torchvision
import ssl
from torch.utils.tensorboard import SummaryWriter
# 解决证书过期问题
ssl._create_default_https_context = ssl._create_unverified_context
# 定义Compose中的transform操作
dataset_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(), ])
# 获取训练集和测试集,进行transform操作
train_set = torchvision.datasets.CIFAR10("./dataset3", train=True, transform=dataset_transform, download=True)
test_set = torchvision.datasets.CIFAR10("./dataset3", train=False, transform=dataset_transform, download=True)
"""
# 输出格式
print(test_set[0])
print(test_set.classes)
img, target = test_set[0]
print(img)
print(target)
print(test_set.classes[target])
img.show()"""
# 可视化
writer = SummaryWriter("logs")
for i in range(10):
img, target = train_set[i]
writer.add_image("torchvision_dataset", img, i)
writer.close()
from torch.utils.data import DataLoader
DataLoader(数据集, 每批数量, 打乱次序, 并发数量, 删除余数) 批量加载数据
coding:批量加载CIFAR10数据集 并可视化
import torchvision
from torch.utils.data import DataLoader
# 获取数据集
from torch.utils.tensorboard import SummaryWriter
test_data = torchvision.datasets.CIFAR10("./dataset3", train=True, transform=torchvision.transforms.ToTensor(), download=True)
# 加载数据
data_loader = DataLoader(test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)
# 输出图像信息
img, target = test_data[0]
print(img.shape)
print(target)
# 图像可视化
writer = SummaryWriter("logs")
step = 0
for data in data_loader:
imgs, targets = data
# print(imgs.shape)
# print(targets)
writer.add_images("dataloader", imgs, step)
step = step+1
from torch import nn
class Model(nn.Moudle): 继承实现,重写init和forward方法
注:类调用过程
__init__() 创建类对象
__call__() 使类对象可以直接调用call中的方法,而不是 类名.方法名
forward() 在__call__()中被调用,故给类对象传参可直接调用forward()方法
coding:深度学习模型 框架实现
import torch
from torch import nn
class Models(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, input):
output = input + 1
return output
models = Models()
x = torch.tensor(1.0)
output = models(x)
print(output)
from torch.nn import Conv2d
Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0) 卷积计算
注:torch.reshanpe(img,(-1, 3, 32, 32)) 修改图像形状
coding:卷积函数的理解
import torch
import torch.nn.functional as F
# 输入图像
input = torch.tensor([[1, 2, 0, 3, 1], [0, 1, 2, 3, 1], [1, 2, 1, 0, 0],
[5, 2, 3, 1, 1], [2, 1, 0, 1, 1]])
# 卷积核
kernel = torch.tensor([[1, 2, 1], [0, 1, 0], [2, 1, 0]])
# 尺寸变换
input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))
# 卷积
output = F.conv2d(input, kernel, stride=1, padding=1)
print(output)
coding:深度学习模型内实现卷积层 并可视化
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
# 获取数据集 dataset
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset3", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
# 加载数据 dataloader
dataloader = DataLoader(dataset, batch_size=64)
# 深度学习模型内实现卷积
class Mode(nn.Module):
def __init__(self) -> None:
super().__init__()
# 卷积
self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0) # 类的实例
def forward(self, input):
input = self.conv1(input)
return input
# 提取特征并可视化
writer = SummaryWriter("logs")
modes = Mode() # 创建实例
step = 0
for data in dataloader:
imgs, targets = data
output = modes(imgs) # 调用forward
writer.add_images("input", imgs, step)
output = torch.reshape(output, [-1, 3, 30, 30])
writer.add_images("output", output, step)
step = step+1
writer.close()
from torch.nn import MaxPool2d
MaxPool2d(kernel_size=3, ceil_mode=True) 最大池化计算
coding:深度学习模型内实现池化层 并可视化
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 数据集
dataset = torchvision.datasets.CIFAR10("./dataset3", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
# 加载数据
dataloader = DataLoader(dataset, batch_size=64)
# 深度学习模型实现池化
class Mode(nn.Module):
def __init__(self) -> None:
super().__init__()
self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, x):
x = self.maxpool1(x)
return x
# 特征降维并可视化
modes = Mode()
writer = SummaryWriter("logs")
step = 0
for data in dataloader:
imgs, targets = data
output = modes(imgs)
writer.add_images("input", imgs, step)
writer.add_images("output", output, step)
step += 1
writer.close()
from torch.nn import Sigmoid,ReLU
ReLU()、Sigmoid() 非线性函数,使模型具有拟合任意函数的能力
coding:深度学习模型内实现非线性激活层 并可视化
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset3", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)
# 非线性激活
class Nonlinear(nn.Module):
def __init__(self) -> None:
super().__init__()
# self.relu1 = ReLU()
self.sigmoid1 = Sigmoid()
def forward(self, x):
# x = self.relu1(x)
x = self.sigmoid1(x)
return x
writer = SummaryWriter("logs")
nonlinear = Nonlinear()
step = 0
for data in dataloader:
imgs, tragets = data
output = nonlinear(imgs)
writer.add_images("input", imgs, step)
writer.add_images("output", output, step)
step += 1
writer.close()
from torch.nn import Linear
Linear(196600, 10) 线性变换
注:torch.flatten(imgs) 扁平化图像到一维
coding:深度学习模型内实现线性层 并可视化
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset3", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64, drop_last=True)
# 线性激活
class Mode(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = Linear(196600, 10)
def forward(self, input):
output = self.linear1(input)
return output
# 线性变换并可视化
writer = SummaryWriter("logs")
mode = Mode()
step = 0
for data in dataset:
imgs, targets = data
output= torch.flatten(imgs)
output = mode(output)
writer.add_images("input", imgs, step)
writer.add_images("output", output, step)
step += 1
writer.close()
from torch.nn import Sequential
Sequential( Conv2d(3, 32, 5, padding=2), MaxPool2d(2), ) 序列化操作
注:torch.ones(64, 3, 32, 32) 生成全1图像
coding:深度学习模型内实现序列化操作 并可视化
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset3", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64, drop_last=True)
"""
# 模型没有实现Sequential()
class Mode(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = Conv2d(3,32,kernel_size=5,padding=2, stride=1) # 卷积
self.maxpool1 = MaxPool2d(2) # 池化
self.conv2 = Conv2d(32, 32, kernel_size=5, padding=2) # 卷积
self.maxpool2 = MaxPool2d(2) # 池化
self.conv3 = Conv2d(32, 64, kernel_size=5, padding=2) # 卷积
self.maxpool3 = MaxPool2d(2) # 池化
self.flatten = Flatten() # 扁平化
self.linear1 = Linear(1024, 64) # 线性化
self.linear2 = Linear(64, 10) # 线性化
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x"""
# 模型实现Sequential()
class Mode(nn.Module):
def __init__(self) -> None:
super().__init__()
self.mode1 = Sequential(
Conv2d(3, 32, kernel_size=5, padding=2, stride=1),
MaxPool2d(2),
Conv2d(32, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, kernel_size=5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.mode1(x)
return x
# 序列化操作并可视化
mode = Mode()
input = torch.ones(64, 3, 32, 32)
output = mode(input)
print(output.shape)
writer = SummaryWriter("logs")
writer.add_graph(mode, input)
writer.close()
from torch.nn import L1Loss
L1Loss(reduction='sum') 计算损失值(均值或总和)
from torch.nn import MSELoss
MSELoss() 均方损失
from torch.nn import CrossEntropyLoss
CrossEntropyLoss() 交叉熵损失,实际输出与目标之间的差距
backward() 反向传播,计算出梯度用于优化
coding:不同损失函数的使用
import torch
from torch.nn import L1Loss, MSELoss, CrossEntropyLoss
input = torch.tensor([1, 2, 3], dtype=torch.float32)
target = torch.tensor([1, 2, 5], dtype=torch.float32)
input = torch.reshape(input, (1, 1, 1, 3)) # BCHW
target = torch.reshape(target, (1, 1, 1, 3))
# L1Loss
loss = L1Loss(reduction='sum')
result = loss(input, target)
print(result)
# MSELoss
loss_mse = MSELoss()
reslut_mse = loss_mse(input, target)
print(result)
# CrossEntropyLoss 未匹配时较大,匹配时较小
x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = CrossEntropyLoss()
result_cross = loss_cross(x, y)
print(result_cross)
coding:损失函数的实现
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
# dataset
dataset = torchvision.datasets.CIFAR10("./dataset3", train=False,transform=torchvision.transforms.ToTensor(), download=True)
# dataloader
dataloader = DataLoader(dataset, batch_size=64, drop_last=True)
# Sequential Mode
class Mode(nn.Module):
def __init__(self) -> None:
super().__init__()
self.mode1 = Sequential(
Conv2d(3, 32, kernel_size=5, padding=2, stride=1),
MaxPool2d(2),
Conv2d(32, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, kernel_size=5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.mode1(x)
return x
loss = nn.CrossEntropyLoss() # 损失函数对象
mode = Mode() # mode实例
for data in dataloader:
imgs, targets = data
output = mode(imgs) # sequential处理
result_loss = loss(output, targets) # 损失函数计算
result_loss.backward() # 损失函数梯度计算
print(result_loss)
import torch
optims = torch.optim.SGD(mode.parameters(), lr=0.01) 指定优化算法
optims.zero_grad() 梯度清零
result_loss.backward() 反向传播(求梯度)
optims.step() 参数调优
coding:优化器的实现
import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("./dataset3", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=1, drop_last=True)
class Mode(nn.Module):
def __init__(self) -> None:
super().__init__()
self.mode1 = Sequential(
Conv2d(3, 32, kernel_size=5, padding=2, stride=1),
MaxPool2d(2),
Conv2d(32, 32, kernel_size=5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, kernel_size=5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.mode1(x)
return x
loss = nn.CrossEntropyLoss() # 损失函数对象
mode = Mode() # 模型对象
optim = torch.optim.SGD(mode.parameters(), lr=0.01) # 优化器
for epoch in range(20):
running_loss = 0.0
for data in dataloader:
imgs, targets = data
output = mode(imgs)
result_loss = loss(output, targets)
optim.zero_grad() # 梯度清零
result_loss.backward() # 反向传播(求梯度)
optim.step() # 参数调优
running_loss += result_loss
print(running_loss)
vgg16 = torchvision.models.vgg16(pretrained=False) 加载模型
vgg16 = torchvision.models.vgg16(pretrained=True) 加载模型和参数
coding:外部模型的使用:增加层、修改层、保存、加载
import torch
import torchvision
# pretrained 预训练模型
# progress 进度条显示
from torch.nn import Linear
vgg16_false = torchvision.models.vgg16(pretrained=False)
vgg16_true = torchvision.models.vgg16(pretrained=True)
train_data = torchvision.datasets.CIFAR10("./dataset3", train=True,
transform=torchvision.transforms.ToTensor(), download=True)
vgg16_true.classifier.add_module("add_linear", Linear()) # 增加层
vgg16_false.classifier[6] = Linear(4096, 10) # 修改层
# 方式一
torch.save(vgg16_false, "vgg16_method1.pth") # 保存模型结构和参数
model = torch.load("vgg16_method1.pth") # 加载
# 方式二
torch.save(vgg16_true.state_dict(), "vgg16_method2.pth") # 保存参数
vgg16 = torchvision.models.vgg16(pretrained=False) # 调用模型
vgg16.load_state_dict(torch.load("vgg16_method2.pth")) # 加载参数
数据连接、数据加载、创建模型、损失函数、优化器、训练(根据误差优化)、测试
coding:模型的搭建
import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
# 搭建神经网络
class Mode(nn.Module):
def __init__(self) -> None:
super().__init__()
self.modes = Sequential(
Conv2d(3, 32, 5, 1, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, 1, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, 1, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.modes(x)
return x
if __name__ == '__main__':
modes = Mode()
input = torch.ones((64, 3, 32, 32))
output = modes(input)
print(output.shape)
coding:模型训练
import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from demo18_model import Mode
# 训练集和测试集
train_data = torchvision.datasets.CIFAR10("./dataset3", train=True,
transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("./dataset3", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
# 数据集大小
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的大小是:{}".format(train_data_size))
print("测试数据集的大小时:{}".format(test_data_size))
# 数据加载
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建模型实例
modes = Mode()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 优化器
learning_rate = 0.01
optim = torch.optim.SGD(modes.parameters(), lr=learning_rate)
# 参数设置
total_train_step = 0 # 训练次数
total_test_step = 0 # 测试次数
epoch = 10 # 训练轮次
writer = SummaryWriter("logs")
for i in epoch:
print("-----------第{}轮训练开始-----------".format(i+1))
# 训练
modes.train()
for data in train_dataloader:
imgs, targets = data
outputs = modes(imgs) # 训练结果
loss = loss_fn(outputs, targets) # 损失值
optim.zero_grad() # 梯度清零
loss.backward() # 反向传递
optim.step() # 优化
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step) # 记录损失
# 测试
modes.eval()
total_test_lose = 0
total_accuracy = 0 # 正确率
with torch.no_grad: # 强制不计算梯度相关
for data in test_dataloader:
imgs, targets = data
outputs = modes(imgs)
loss = loss_fn(outputs, targets)
total_test_lose += loss.item()
accuracy = outputs.argmax(1) # argmax() 获取结果最大值位置,1为横向比较,0为纵向比较
total_accuracy += (accuracy == targets).sum() # 与目标相同的个数
print("整体测试集上的Loss:{}".format(total_test_lose))
print("整体测试集的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_lose, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step += 1
torch.save(modes, "modes_{}.pth".format(i))
print("模型已保存")
writer.close()
a、modes = modes.cuda() 模型、数据、损失函数可使用
b、device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 定义设备
3、modes = modes.to(device) 调用设备,模型、数据、损失函数可使用
coding:GPU的使用-方式1
import torch
import torchvision
import time
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# from demo18_model import Mode
# 训练集和测试集
train_data = torchvision.datasets.CIFAR10("./dataset3", train=True,
transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("./dataset3", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
# 数据集大小
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的大小是:{}".format(train_data_size))
print("测试数据集的大小时:{}".format(test_data_size))
# 数据加载
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建模型
class Mode(nn.Module):
def __init__(self) -> None:
super().__init__()
self.modes = Sequential(
Conv2d(3, 32, 5, 1, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, 1, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, 1, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.modes(x)
return x
modes = Mode()
if torch.cuda.is_available():
modes = modes.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
# 优化器
learning_rate = 0.01
optim = torch.optim.SGD(modes.parameters(), lr=learning_rate)
# 参数设置
total_train_step = 0 # 训练次数
total_test_step = 0 # 测试次数
epoch = 10 # 训练轮次
writer = SummaryWriter("logs")
start_time = time.time()
for i in epoch:
print("-----------第{}轮训练开始-----------".format(i+1))
# 训练
modes.train()
for data in train_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = modes(imgs) # 训练结果
loss = loss_fn(outputs, targets) # 损失值
optim.zero_grad() # 梯度清零
loss.backward() # 反向传递
optim.step() # 优化
total_train_step += 1
if total_train_step % 100 == 0:
end_time = time.time()
print(end_time-start_time)
print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step) # 记录损失
# 测试
modes.eval()
total_test_lose = 0
total_accuracy = 0 # 正确率
with torch.no_grad: # 强制不计算梯度相关
for data in test_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = modes(imgs)
loss = loss_fn(outputs, targets)
total_test_lose += loss.item()
accuracy = outputs.argmax(1) # argmax() 获取结果最大值位置,1为横向比较,0为纵向比较
total_accuracy += (accuracy == targets).sum() # 与目标相同的个数
print("整体测试集上的Loss:{}".format(total_test_lose))
print("整体测试集的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_lose, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step += 1
torch.save(modes, "modes_{}.pth".format(i))
print("模型已保存")
writer.close()
coding:GPU的使用-方式2
import torch
import torchvision
import time
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# from demo18_model import Mode
# 定义设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 训练集和测试集
train_data = torchvision.datasets.CIFAR10("./dataset3", train=True,
transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("./dataset3", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
# 数据集大小
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的大小是:{}".format(train_data_size))
print("测试数据集的大小时:{}".format(test_data_size))
# 数据加载
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建模型
class Mode(nn.Module):
def __init__(self) -> None:
super().__init__()
self.modes = Sequential(
Conv2d(3, 32, 5, 1, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, 1, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, 1, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.modes(x)
return x
modes = Mode()
modes = modes.to(device)
# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
# 优化器
learning_rate = 0.01
optim = torch.optim.SGD(modes.parameters(), lr=learning_rate)
# 参数设置
total_train_step = 0 # 训练次数
total_test_step = 0 # 测试次数
epoch = 10 # 训练轮次
writer = SummaryWriter("logs")
start_time = time.time()
for i in range(epoch):
print("-----------第{}轮训练开始-----------".format(i+1))
# 训练
modes.train()
for data in train_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = modes(imgs) # 训练结果
loss = loss_fn(outputs, targets) # 损失值
optim.zero_grad() # 梯度清零
loss.backward() # 反向传递
optim.step() # 优化
total_train_step += 1
if total_train_step % 100 == 0:
end_time = time.time()
print(end_time-start_time)
print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step) # 记录损失
# 测试
modes.eval()
total_test_lose = 0
total_accuracy = 0 # 正确率
with torch.no_grad(): # 强制不计算梯度相关
for data in test_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = modes(imgs)
loss = loss_fn(outputs, targets)
total_test_lose += loss.item()
accuracy = outputs.argmax(1) # argmax() 获取结果最大值位置,1为横向比较,0为纵向比较
total_accuracy += (accuracy == targets).sum() # 与目标相同的个数
print("整体测试集上的Loss:{}".format(total_test_lose))
print("整体测试集的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_lose, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step += 1
torch.save(modes, "modes_{}.pth".format(i))
print("模型已保存")
writer.close()
coding:训练结果测试
import torch
import torchvision
from PIL import Image
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
# 测试图像
image_path = "images/dog.png"
image = Image.open(image_path)
image = image.convert("RGB")
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
torchvision.transforms.ToTensor()])
image = transform(image)
# 定义模型
class Mode(nn.Module):
def __init__(self) -> None:
super().__init__()
self.modes = Sequential(
Conv2d(3, 32, 5, 1, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, 1, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, 1, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.modes(x)
return x
# 加载模型
model = torch.load("modes_9.pth", map_location="cuda")
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
image = image.cuda()
model.eval()
with torch.no_grad():
output = model(image)
print(output)
print(output.argmax(1))