MLPClassifier是一个监督学习算法,下图是只有1个隐藏层的MLP模型 ,左侧是输入层,右侧是输出层。
上图的整体结构可以简单的理解为下图所示:
MLP又名多层感知机,也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐藏层,如果没有隐藏层即可解决线性可划分的数据问题。最简单的MLP模型只包含一个隐藏层,即三层的结构,如上图。
从上图可以看到,多层感知机的层与层之间是全连接的(全连接的意思就是:上一层的任何一个神经元与下一层的所有神经元都有连接)。多层感知机最底层是输入层,中间是隐藏层,最后是输出层。
输入层没什么好说,你输入什么就是什么,比如输入是一个n维向量,就有n个神经元。
隐藏层的神经元怎么得来?首先它与输入层是全连接的,假设输入层用向量X表示,则隐藏层的输出就是
f(W1X+b1),W1是权重(也叫连接系数),b1是偏置,函数f 可以是常用的sigmoid函数或者tanh函数:
最后就是输出层,输出层与隐藏层是什么关系?其实隐藏层到输出层可以看成是一个多类别的逻辑回归,也即softmax回归,所以输出层的输出就是softmax(W2X1+b2),X1表示隐藏层的输出f(W1X+b1)。
MLP整个模型就是这样子的,上面说的这个三层的MLP用公式总结起来就是,函数G是softmax
因此,MLP所有的参数就是各个层之间的连接权重以及偏置,包括W1、b1、W2、b2。对于一个具体的问题,怎么确定这些参数?求解最佳的参数是一个最优化问题,解决最优化问题,最简单的就是梯度下降法了(sgd):首先随机初始化所有参数,然后迭代地训练,不断地计算梯度和更新参数,直到满足某个条件为止(比如误差足够小、迭代次数足够多时)。这个过程涉及到代价函数、规则化(Regularization)、学习速率(learning rate)、梯度计算等。
下面写了一个超级简单的实例,训练和测试数据是mnist手写识别数据集:
from sklearn.neural_network import MLPClassifier
import gzip
import pickle
with gzip.open('./mnist.pkl.gz') as f_gz:
train_data,valid_data,test_data = pickle.load(f_gz)
clf = MLPClassifier(solver='sgd',activation = 'identity',max_iter = 10,alpha = 1e-5,hidden_layer_sizes = (100,50),random_state = 1,verbose = True)
clf.fit(train_data[0][:10000],train_data[1][:10000])
print clf.predict(test_data[0][:10])
print(clf.score(test_data[0][:100],test_data[1][:100]))
print(clf.predict_proba(test_data[0][:10]))
参数说明:
参数说明:
1. hidden_layer_sizes :例如hidden_layer_sizes=(50, 50),表示有两层隐藏层,第一层隐藏层有50个神经元,第二层也有50个神经元。
2. activation :激活函数,{‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, 默认relu
- identity:f(x) = x
- logistic:其实就是sigmod,f(x) = 1 / (1 + exp(-x)).
- tanh:f(x) = tanh(x).
- relu:f(x) = max(0, x)
3. solver: {‘lbfgs’, ‘sgd’, ‘adam’}, 默认adam,用来优化权重
- lbfgs:quasi-Newton方法的优化器
- sgd:随机梯度下降
- adam: Kingma, Diederik, and Jimmy Ba提出的机遇随机梯度的优化器
注意:默认solver ‘adam’在相对较大的数据集上效果比较好(几千个样本或者更多),对小数据集来说,lbfgs收敛更快效果也更好。
4. alpha :float,可选的,默认0.0001,正则化项参数
5. batch_size : int , 可选的,默认’auto’,随机优化的minibatches的大小batch_size=min(200,n_samples),如果solver是’lbfgs’,分类器将不使用minibatch
6. learning_rate :学习率,用于权重更新,只有当solver为’sgd’时使用,{‘constant’,’invscaling’, ‘adaptive’},默认constant
- ‘constant’: 有’learning_rate_init’给定的恒定学习率
- ‘incscaling’:随着时间t使用’power_t’的逆标度指数不断降低学习率learning_rate_ ,effective_learning_rate = learning_rate_init / pow(t, power_t)
- ‘adaptive’:只要训练损耗在下降,就保持学习率为’learning_rate_init’不变,当连续两次不能降低训练损耗或验证分数停止升高至少tol时,将当前学习率除以5.
7. power_t: double, 可选, default 0.5,只有solver=’sgd’时使用,是逆扩展学习率的指数.当learning_rate=’invscaling’,用来更新有效学习率。
8. max_iter: int,可选,默认200,最大迭代次数。
9. random_state:int 或RandomState,可选,默认None,随机数生成器的状态或种子。
10. shuffle: bool,可选,默认True,只有当solver=’sgd’或者‘adam’时使用,判断是否在每次迭代时对样本进行清洗。
11. tol:float, 可选,默认1e-4,优化的容忍度
12. learning_rate_int:double,可选,默认0.001,初始学习率,控制更新权重的补偿,只有当solver=’sgd’ 或’adam’时使用。
14. verbose : bool, 可选, 默认False,是否将过程打印到stdout
15. warm_start : bool, 可选, 默认False,当设置成True,使用之前的解决方法作为初始拟合,否则释放之前的解决方法。
16. momentum : float, 默认 0.9,动量梯度下降更新,设置的范围应该0.0-1.0. 只有solver=’sgd’时使用.
17. nesterovs_momentum : boolean, 默认True, Whether to use Nesterov’s momentum. 只有solver=’sgd’并且momentum > 0使用.
18. early_stopping : bool, 默认False,只有solver=’sgd’或者’adam’时有效,判断当验证效果不再改善的时候是否终止训练,当为True时,自动选出10%的训练数据用于验证并在两步连续迭代改善,低于tol时终止训练。
19. validation_fraction : float, 可选, 默认 0.1,用作早期停止验证的预留训练数据集的比例,早0-1之间,只当early_stopping=True有用
20. beta_1 : float, 可选, 默认0.9,只有solver=’adam’时使用,估计一阶矩向量的指数衰减速率,[0,1)之间
21. beta_2 : float, 可选, 默认0.999,只有solver=’adam’时使用估计二阶矩向量的指数衰减速率[0,1)之间
22. epsilon : float, 可选, 默认1e-8,只有solver=’adam’时使用数值稳定值。
属性说明:
- classes_:每个输出的类标签
- loss_:损失函数计算出来的当前损失值
- coefs_:列表中的第i个元素表示i层的权重矩阵
- intercepts_:列表中第i个元素代表i+1层的偏差向量
- n_iter_ :迭代次数
- n_layers_:层数
- n_outputs_:输出的个数
- out_activation_:输出激活函数的名称。
方法说明:
- fit(X,y):拟合
- get_params([deep]):获取参数
- predict(X):使用MLP进行预测
- predic_log_proba(X):返回对数概率估计
- predic_proba(X):概率估计
- score(X,y[,sample_weight]):返回给定测试数据和标签上的平均准确度
-set_params(**params):设置参数。