- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 【AI大模型】深入解析预训练:大模型时代的核心引擎
我爱一条柴ya
学习AI记录深度学习人工智能aipythonAI编程算法
预训练已成为现代人工智能,尤其是自然语言处理和计算机视觉领域的基石技术。它彻底改变了模型开发范式,催生了BERT、GPT等革命性模型。本文将系统阐述预训练的核心概念、原理、方法、应用及挑战。一、预训练的本质:为何需要它?核心问题:数据标注的瓶颈监督学习依赖海量高质量标注数据,获取成本极高(时间、金钱、专业知识)。对于复杂任务(如理解语义、生成文本),标注难度呈指数级上升。标注数据稀缺导致模型泛化能
- 基于FPGA的二维FFT实现
廉连曼
基于FPGA的二维FFT实现【下载地址】基于FPGA的二维FFT实现本项目提供了一种基于FPGA的高效二维FFT实现方案,专为数字信号处理和图像处理领域设计。通过并行使用两个一维FFT单元,本方案显著提升了二维FFT变换的计算效率,并基于Xilinx的FFTIP核,确保易于集成到其他FPGA设计中。该方案适用于各类频谱分析场景,尤其适合图像处理系统。经过Verilog编程和Modelsim仿真测试
- 基于FPGA的快速傅里叶变换(FFT)设计在嵌入式系统中的应用
风吹麦很
fpga开发嵌入式
基于FPGA的快速傅里叶变换(FFT)设计在嵌入式系统中的应用快速傅里叶变换(FastFourierTransform,FFT)是一种重要的信号处理算法,在许多领域中都得到广泛的应用,例如通信系统、雷达技术、图像处理等。为了提高FFT的计算性能和实时性,将其设计为硬件加速器常常是一个明智的选择。本文将介绍基于现场可编程门阵列(Field-ProgrammableGateArray,FPGA)的FF
- OpenCvSharp 实现环形文字识别OCR实例(C#)
XisVisual_Basic
ocrc#计算机视觉C#
近年来,随着计算机视觉和图像处理的不断发展,光学字符识别(OCR)技术也变得愈发成熟。OCR技术可以将图像中的文字转换为可编辑和可搜索的文本,为人们带来了极大的便利。在本篇文章中,我们将介绍如何使用OpenCvSharp库来实现环形文字的识别。首先,在使用OpenCvSharp之前,我们需要确保已经在项目中引用了该库,并添加相应的命名空间。usingOpenCvSharp;接下来,我们需要准备一张
- 环形文字识别实例:使用OpenCV和OCR的C/C++实现
TechPr
opencvocrc语言C/C++
环形文字识别实例:使用OpenCV和OCR的C/C++实现在本篇文章中,我们将介绍如何使用OpenCV和OCR技术来实现环形文字的识别。我们将使用C/C++语言编写源代码,并通过一步一步的解释来帮助您理解实现的过程。导入必要的库首先,我们需要导入所需的库。我们将使用OpenCV来处理图像,以及OCR库来进行文字识别。以下是所需的头文件:#include#include#
- Python|OpenCV-实现识别弧形文字(17)
写python的鑫哥
OpenCV入门与进阶pythonopencv人工智能计算机视觉弧形文字环形文字识别
前言本文是该专栏的第19篇,后面将持续分享OpenCV计算机视觉的干货知识,记得关注。我们知道,OCR可以识别文字方面的需求,但是如果遇到那些目标文字是“弧形文字”,需要怎么去识别呢?遇到想要识别“弧形文字”的需求,这个时候你可以借助于Opencv+OCR技术来实现。而本文,笔者将针对上述问题需求,利用OpenCV结合OCR来实现“弧形文字”的识别。废话不多说,具体的细节部分以及详细的解决方案,跟
- 【小白入门必看】一文读懂深度学习计算机视觉技术及学习路线
一、什么是计算机视觉?计算机视觉,其实就是教机器怎么像我们人一样,用摄像头看看周围的世界,然后理解它。比如说,它能认出这是个苹果,或者那边有辆车。除此之外,还能把拍到的照片或者视频转换成有用的信息,帮我们做决定。整个过程就是为了让机器能看懂图像,然后根据这些图像来做出聪明的选择。二、计算机视觉实现起来难吗?人类依赖视觉,找辆汽车轻而易举,毕竟汽车那么大,一眼就能看出来,所以常误以为计算机视觉简单,
- 计算机视觉:Transformer的轻量化与加速策略
xcLeigh
计算机视觉CV计算机视觉transformer人工智能AI策略
计算机视觉:Transformer的轻量化与加速策略一、前言二、Transformer基础概念回顾2.1Transformer架构概述2.2自注意力机制原理三、Transformer轻量化策略3.1模型结构优化3.1.1减少层数和头数3.1.2优化Patch大小3.2参数共享与剪枝3.2.1参数共享3.2.2剪枝3.3知识蒸馏四、Transformer加速策略4.1模型量化4.2.2TPU加速4.
- 【机器学习】解密计算机视觉:CNN、目标检测与图像识别核心技术(第25天)
吴师兄大模型
0基础实现机器学习入门到精通机器学习计算机视觉cnn人工智能目标检测图像识别pytorch
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 人体坐姿检测系统开发实战(YOLOv8+PyTorch+可视化)
Loving_enjoy
计算机学科论文创新点人工智能深度学习迁移学习经验分享
本文将手把手教你构建智能坐姿检测系统,结合目标检测与姿态估计技术,实现不良坐姿的实时识别与预警###一、项目背景与价值现代人每天平均坐姿时间超过8小时,不良坐姿会导致:-脊椎压力增加300%-颈椎病发病率提升45%-腰椎间盘突出风险增加60%本系统通过计算机视觉技术实时监测坐姿状态,对驼背、侧倾、前倾等不良姿势进行智能识别和预警。相较于传统传感器方案,我们的视觉方案具有非接触、低成本、易部署的优势
- 魔都AI医疗哪家强?全景揭秘科技创新与未来钱景!
引言上海作为中国科技创新的先锋城市,正在AI医疗领域崭露头角。根据2024年12月的数据,上海拥有34家专注于AI药物研发的公司,占全国预临床研究的60%和临床试验的47%。这些公司利用深度学习、大语言模型(LLM)和计算机视觉等技术,革新药物发现、医疗影像分析和数据治理,推动医疗行业的智能化转型。从全球首个人工智能医院“AgentHospital”到AI驱动的诊断系统,上海的AI医疗生态正在重塑
- 语义分割模型的轻量化与准确率提升研究
pk_xz123456
仿真模型深度学习算法transformer深度学习人工智能算法数据结构
语义分割模型的轻量化与准确率提升研究1.引言语义分割是计算机视觉领域的核心任务之一,它要求模型为图像中的每个像素分配一个类别标签。随着深度学习的发展,语义分割模型在多个领域得到了广泛应用,如自动驾驶、医学影像分析、遥感图像解译等。然而,现有的语义分割模型往往面临两个主要挑战:模型复杂度高导致难以部署在资源受限的设备上,以及准确率仍有提升空间以满足实际应用需求。本文将从模型轻量化和准确率提升两个角度
- 基于小样本的高光谱图像分类任务:CMFSL方法及Python实现
pk_xz123456
仿真模型算法深度学习分类python人工智能深度学习机器学习
基于小样本的高光谱图像分类任务:CMFSL方法及Python实现1.引言高光谱图像分类是遥感图像处理领域的重要研究方向,它在农业监测、环境评估、军事侦察等领域有着广泛的应用。与传统RGB图像不同,高光谱图像包含数百个连续的光谱波段,能够提供丰富的光谱信息。然而,高光谱图像分类面临着维度灾难、样本获取困难等挑战,特别是在小样本条件下,传统分类方法往往表现不佳。针对这一问题,本文介绍一种基于小样本的高
- Python深度学习实践:建立端到端的自动驾驶系统
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:建立端到端的自动驾驶系统1.背景介绍自动驾驶系统是当今科技领域最具挑战性和前景的应用之一。它融合了计算机视觉、深度学习、规划与控制等多个领域的先进技术,旨在实现车辆的自主感知、决策和操控。随着人工智能技术的不断发展,越来越多的公司和研究机构投入了大量资源来开发自动驾驶系统。Python作为一种高效、易学且开源的编程语言,在这一领域扮演着重要角色。本文将探讨如何利用Pyth
- OpenCV实战之二 | 基于哈希算法比较图像的相似性
w94ghz
OpenCV实战笔记opencv哈希算法人工智能
前言☘️本章节主要介绍常用的图像相似性评价算法:图像哈希算法。图像哈希算法通过获取图像的哈希值并比较两幅图像的哈希值的汉明距离来衡量两幅图像是否相似。两幅图像越相似,其哈希值的汉明距离越小。图像哈希算法可以用于图片检索,重复图片剔除,以图搜图以及图片相似度比较。目录一、汉明距离二、img_hash模块三、哈希算法哈希算法实现步骤:代码实现一、汉明距离汉明距离(HammingDistance)是用于
- 位运算符详解
在C语言中,位运算符(BitwiseOperators)用于对整数类型(如int,unsignedint,long,char等)的二进制位进行操作。这些操作比算术运算更底层,常用于嵌入式开发、驱动开发、图像处理、网络协议、加密等场景。下面是C语言中所有的位运算符及其详解:一、位运算符列表运算符名称功能说明&位与(AND)两个二进制位都为1,结果才为1``位或(OR)^位异或(XOR)两个二进制位不
- 从0开始学习计算机视觉--Day08--卷积神经网络
之前我们提到,神经网络是通过全连接层对输入做降维处理,将输入的向量通过矩阵和激活函数进行降维,在神经元上输出激活值。而卷积神经网络中,用卷积层代替了全连接层。不同的是,这里的输入不再需要降维,而是可以保留输入的空间结构,例如输入的是32×32×3的图片,在全连接层中是3072×1的向量,而卷积层里则保持不变。这里的改变的地方是对于同样的WX的函数形式,这里是把5×5×3的权重矩阵(也叫卷积核)向量
- OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV的CUDA模块(cudev)中的一个设备端内联函数,用于高效地计算两个uint类型值的带权重平均值。该函数返回两个无符号整数a和b的加权平均值,权重为:return(a*3+b)/4;函数原型__device____forceinline__uintc
- Python打卡:Day40
#先继续之前的代码importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,Dataset#DataLoader是PyTorch中用于加载数据的工具fromtorchvisionimportdatasets,transforms#torchvision是一个用于计算机视觉的库,
- FDMA读写AXI BRAM交互:FPGA高速数据传输的核心技术
芯作者
D1:ZYNQ设计fpga开发
在图像处理系统中,当1080P视频流以每秒60帧的速度传输时,传统DMA每帧会浪费27%的带宽在地址管理上——而FDMA技术能将这些损失降至3%以内现代FPGA系统中,高效数据搬运往往是性能瓶颈的关键所在。当你在手机上流畅播放4K视频、在自动驾驶系统中实时处理激光雷达点云时,背后都依赖于FDMA(FlexibleDirectMemoryAccess)与AXIBRAM的高效交互技术。本文将深入探讨这
- 【解决方案】Building wheel for opencv-python:安装卡顿的原因与解决方案。
当你pipinstallopencv-python或pipinstallopencv-contrib-python时,命令行停在Buildingwheelforopencv-python(PEP517)...-似乎卡住了。其实,这并非程序假死,而是OpenCV这个庞大的C++library在进行compile,这个过程非常耗时。为何安装过程如此漫长?这是因为OpenCV是一个庞大的C++libra
- Python在人工智能领域的实际应用:示例代码解析
辣条yyds
pythonpython人工智能开发语言
摘要:本文将通过几个典型的人工智能应用场景,展示Python在图像识别、自然语言处理、推荐系统等方面的高级用法。通过示例代码,带大家深入理解Python在人工智能领域的实际应用。正文:Python作为一门流行的编程语言,凭借其简洁的语法、丰富的库和框架,成为了人工智能(AI)领域的主流开发语言。下面,我们将通过几个示例,探讨Python在人工智能方向的实际应用。示例一:图像识别-使用OpenCV进
- BigQuery对象引用(ObjectRef)全面指南:一站式整合结构化与非结构化多模态数据分析
引言企业需要同时管理有组织表格中的结构化数据,以及日益增长的非结构化数据(如图片、音频和文档)。传统上,联合分析这些多样化数据类型非常复杂,通常需要使用不同的工具。非结构化媒体通常需要导出到专门的服务进行处理(如图片分析需计算机视觉服务,音频需语音转文本引擎),这会造成数据孤岛,阻碍全局分析视角的建立。以虚构的电商支持系统为例:结构化的工单信息存储在BigQuery表中,而相关的支持通话录音或损坏
- NumPy:科学计算的超能引擎[特殊字符](深入剖析+实战技巧)
码海漫游者8
numpy其他
文章目录为什么NumPy是Python科学计算的绝对核心?三维痛点直击ndarray:NumPy的核武器剖析内存布局揭秘(超级重要‼️)维度操作黑科技广播机制(Broadcasting)性能屠杀现场️高级技巧武装包️内存映射大文件爱因斯坦求和约定结构化数组真实世界应用场景图像处理机器学习数据预处理踩坑预警⚠️视图vs副本整数溢出性能压榨终极指南避免复制四法则终极加速方案你知道吗?就在你刷短视频的几
- Hough变换
先上代码,c++1.hough检测线//LineFinder.h#include"opencv2/imgproc/imgproc.hpp"#include"opencv2/highgui/highgui.hpp"#include"opencv2/core/core.hpp"#include//#include//#includeusingnamespacestd;usingnamespacecv;
- opencv初步学习——图像处理2
这一部分主要讲解如何初步地创建一个图像,以及彩色图像我们的一些基本处理方法一、创建一个灰度图像1-1、zeros()函数[NumPy库]要用到这一个函数,首先我们需要调用我们的NumPy库,这一个函数的作用是可以帮助我们生成一个元素值都是0的二维数组,如果我们把这些数据放到一张图片里面去,那么就对应着我们的一个黑色图像。当然我们也可以通过修改数组中的数字大小来改变图像的颜色(但还是灰度图像)(1)
- OpenCV 人脸分析------面部关键点检测类cv::face::FacemarkLBF
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用LocalBinaryFeatures(LBF)算法进行面部关键点检测(faciallandmarkdetection)。该算法通过级联回归树预测人脸的68个关键点,具有较高的精度和速度。公共成员函数staticPtrcreate(constParams&pa
- RK3588 源码编译 opencv
hitsz_syl
opencv人工智能计算机视觉
从你的输出信息来看,系统已经安装了libpng1.6.37(最新版本),但OpenCV4.8.1在编译时仍然找不到png_set_longjmp_fn和png_get_eXIf_1等符号。这表明CMake可能没有正确链接到系统的libpng库,或者OpenCV的编译配置存在问题。解决方案1.检查libpng是否包含所需符号运行以下命令,确认libpng.so是否包含OpenCV需要的符号:nm-D
- 【心灵鸡汤】深度学习技能形成树:从零基础到AI专家的成长路径全解析
智算菩萨
人工智能深度学习
引言:技能树的生长哲学在这个人工智能浪潮汹涌的时代,深度学习犹如一棵参天大树,其根系深深扎入数学与计算科学的沃土,主干挺拔地承载着机器学习的核心理念,而枝叶则繁茂地延伸至计算机视觉、自然语言处理、强化学习等各个应用领域。对于初入此领域的新手而言,理解这棵技能树的生长规律,掌握其形成过程中的关键节点和发展阶段,将直接决定其在人工智能道路上能够走多远、攀多高。技能树的概念源于游戏设计,但在学习深度学习
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag