Opencv外参估计cvFindExtrinsicCameraParams2原理解析(四)

背景介绍

在之前的博文中,已经在外参估计函数cvFindExtrinsicCameraParams2分别进行了单应性方法、DLT方法,单应性矩阵进一步估计旋转平移量做了原理解析。本文对opencv在估计得到初始的外参之后,进一步迭代计算的推导详细分析,这一部分其实是相机标定迭代计算中对R,t的求导。

原理解析

在该函数第一篇解析中提到过,该函数是solvePnP函数选用CV_ITERATIVE时的主要执行方法,突显的特点就在于迭代这一步,这一篇博文将推导对构建最小化重投影误差方程后,对旋转分量(3个自由度,以旋转向量形式来表达 R = ( n 1 , n 2 , n 3 ) R=(n_1,n_2,n_3) R=(n1,n2,n3))和平移分量(3个变量,即 T = ( t 1 , t 2 , t 3 T=(t_1,t_2,t_3 T=(t1,t2,t3)迭代优化的过程。有了这一步之后,后续相机标定求解内、外参的原理解析就更容易,只需要再对内参数迭代推导就行。
前面三篇的解析过程多次提到,内参数除了焦距,畸变量都初始化为零,在没有畸变量的情况下,投影仪方程为
z c [ u v 1 ] = [ f x 0 u 0 0 f y v 0 0 0 1 ] [ R 11 R 12 R 13 t 1 R 21 R 22 R 23 t 2 R 31 R 32 R 33 t 3 ] [ X Y Z 1 ] (1) z_{c} \begin{bmatrix} u \\ v\\ 1\end{bmatrix}=\begin{bmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1\end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} & t_1 \\ R_{21} & R_{22} & R_{23} & t_2\\ R_{31} & R_{32} & R_{33} & t_3 \\ \end{bmatrix} \begin{bmatrix} X \\ Y\\Z\\ 1\end{bmatrix}\tag{1} zc uv1 = fx000fy0u0v01 R11R21R31R12R22R32R13R23R33t1t2t3 XYZ1 (1)进一步得到两个等式 u = f x R 11 X + R 12 Y + R 13 Z + t 1 R 31 X + R 32 Y + R 33 Z + t 3 + u 0 v = f y R 21 X + R 22 Y + R 23 Z + t 2 R 31 X + R 32 Y + R 33 Z + t 3 + v 0 (2) \begin{array}{c} u=f_x\cfrac{R_{11}X+R_{12}Y+R_{13}Z+t_1}{R_{31}X+R_{32}Y+R_{33}Z+t_3} +u_0\\ v=f_y\cfrac{R_{21}X+R_{22}Y+R_{23}Z+t_2}{R_{31}X+R_{32}Y+R_{33}Z+t_3} +v_0 \end{array}\tag{2} u=fxR31X+R32Y+R33Z+t3R11X+R12Y+R13Z+t1+u0v=fyR31X+R32Y+R33Z+t3R21X+R22Y+R23Z+t2+v0(2)我们的目标是根据这些参数投影的点与图像识别的点偏差最小,也就是
( R , t ) = arg min ⁡ E = arg min ⁡ ∑ ∣ ∣ ( u − u k ) 2 + ( v − v k ) 2 ∣ ∣ 2 (3) (R,t) = \argmin{E}=\argmin{\sum||(u-u_k)^2+(v-v_k)^2||_2}\tag{3} (R,t)=argminE=argmin∣∣(uuk)2+(vvk)22(3)opencv采用LM算法来解算式(3),LM算法是梯度下降法和高斯牛顿法的结合,在我之前博文高斯牛顿法去畸变中对高斯牛顿法引用做了介绍,令残差为 F ( n 1 , n 2 , n 3 , t 1 , t 2 , t 3 ) = f x R 11 X + R 12 Y + R 13 Z + t 1 R 31 X + R 32 Y + R 33 Z + t 3 + u 0 − u k G ( n 1 , n 2 , n 3 , t 1 , t 2 , t 3 ) = f y R 21 X + R 22 Y + R 23 Z + t 2 R 31 X + R 32 Y + R 33 Z + t 3 + v 0 − v k (4) \begin{array}{c} F(n_1,n_2,n_3,t_1,t_2,t_3)=f_x\cfrac{R_{11}X+R_{12}Y+R_{13}Z+t_1}{R_{31}X+R_{32}Y+R_{33}Z+t_3} +u_0-u_k\\ G(n_1,n_2,n_3,t_1,t_2,t_3)=f_y\cfrac{R_{21}X+R_{22}Y+R_{23}Z+t_2}{R_{31}X+R_{32}Y+R_{33}Z+t_3} +v_0-v_k \end{array}\tag{4} F(n1,n2,n3,t1,t2,t3)=fxR31X+R32Y+R33Z+t3R11X+R12Y+R13Z+t1+u0ukG(n1,n2,n3,t1,t2,t3)=fyR31X+R32Y+R33Z+t3R21X+R22Y+R23Z+t2+v0vk(4)LM求解增量为
[ Δ n 1 Δ n 2 Δ n 3 Δ t 1 Δ t 2 Δ t 3 ] = ( J T J + λ I ) − 1 ( − J T E r r ) (5) \begin{bmatrix} \Delta{n_1}\\ \Delta{n_2}\\ \Delta{n_3} \\\Delta{t_1} \\\Delta{t_2}\\\Delta{t_3} \end{bmatrix} =(J^TJ+\lambda I)^{-1}(-J^TErr)\tag{5} Δn1Δn2Δn3Δt1Δt2Δt3 =(JTJ+λI)1(JTErr)(5)当有N个对应点时,雅可比矩阵为
J = [ ∂ F ∂ n 1 ∂ F ∂ n 2 ∂ F ∂ n 3 ∂ F ∂ t 1 ∂ F ∂ t 2 ∂ F ∂ t 3 ∂ G ∂ n 1 ∂ G ∂ n 2 ∂ G ∂ n 3 ∂ G ∂ t 1 ∂ G ∂ t 2 ∂ G ∂ t 3 . . . . . . ] [ 2 N , 6 ] (6) J=\begin{bmatrix} \cfrac{\partial{F}}{\partial{n_1}} & \cfrac{\partial{F}}{\partial{n_2}} & \cfrac{\partial{F}}{\partial{n_3}} &\cfrac{\partial{F}}{\partial{t_1}} & \cfrac{\partial{F}}{\partial{t_2}} & \cfrac{\partial{F}}{\partial{t_3}} \\ \\ \cfrac{\partial{G}}{\partial{n_1}} & \cfrac{\partial{G}}{\partial{n_2}} & \cfrac{\partial{G}}{\partial{n_3}} &\cfrac{\partial{G}}{\partial{t_1}} & \cfrac{\partial{G}}{\partial{t_2}} & \cfrac{\partial{G}}{\partial{t_3}} \\...\\... \end{bmatrix}_{[2N,6]}\tag{6} J= n1Fn1G......n2Fn2Gn3Fn3Gt1Ft1Gt2Ft2Gt3Ft3G [2N,6](6)每两行对应带入一对点数据,同样的残差矩阵为 E r r = [ F 1 G 1 F 2 G 2 . . . . . . ] [ 2 N , 1 ] (7) Err=\begin{bmatrix} F_1\\G_1\\F_2\\G_2\\...\\... \end{bmatrix}_{[2N,1]}\tag{7} Err= F1G1F2G2...... [2N,1](7)可以看到,在内参数估计值、外参数初始值都有的情况下,且三维点和图像点数据都有,根据式(4)能计算出每个点的残差向量,得到式(7)的矩阵。为了解算出LM迭代中的增量式(6),还需要得到雅可比矩阵的值。根据式(6)可以看出,雅可比矩阵求解分为两部分,一是对旋转向量求导,二是对平移向量求导。

对旋转向量求导

根据式(4)可知, ∂ F ∂ n k = f x ( ∂ R 11 ∂ n k X + ∂ R 12 ∂ n k Y + ∂ R 13 ∂ n k Z ) ( R 31 X + R 32 Y + R 33 Z + t 3 ) − ( R 11 X + R 12 Y + R 13 Z + t 1 ) ( ∂ R 31 ∂ n k X + ∂ R 32 ∂ n k Y + ∂ R 33 ∂ n k Z ) ( R 31 X + R 32 Y + R 33 Z + t 3 ) 2 k = 1 , 2 , 3 (8) \cfrac{\partial{F}}{\partial{n_k}}=f_x\cfrac{(\cfrac{\partial{R_{11}}}{\partial{n_k}}X+\cfrac{\partial{R_{12}}}{\partial{n_k}}Y+\cfrac{\partial{R_{13}}}{\partial{n_k}}Z)(R_{31}X+R_{32}Y+R_{33}Z+t_3)-(R_{11}X+R_{12}Y+R_{13}Z+t_1)(\cfrac{\partial{R_{31}}}{\partial{n_k}}X+\cfrac{\partial{R_{32}}}{\partial{n_k}}Y+\cfrac{\partial{R_{33}}}{\partial{n_k}}Z)}{(R_{31}X+R_{32}Y+R_{33}Z+t_3)^2} \\ k=1,2,3\tag{8} nkF=fx(R31X+R32Y+R33Z+t3)2(nkR11X+nkR12Y+nkR13Z)(R31X+R32Y+R33Z+t3)(R11X+R12Y+R13Z+t1)(nkR31X+nkR32Y+nkR33Z)k=1,2,3(8) ∂ G ∂ n k = f y ( ∂ R 21 ∂ n k X + ∂ R 22 ∂ n k Y + ∂ R 23 ∂ n k Z ) ( R 31 X + R 32 Y + R 33 Z + t 3 ) − ( R 21 X + R 22 Y + R 23 Z + t 2 ) ( ∂ R 31 ∂ n k X + ∂ R 32 ∂ n k Y + ∂ R 33 ∂ n k Z ) ( R 31 X + R 32 Y + R 33 Z + t 3 ) 2 k = 1 , 2 , 3 (9) \cfrac{\partial{G}}{\partial{n_k}}=f_y\cfrac{(\cfrac{\partial{R_{21}}}{\partial{n_k}}X+\cfrac{\partial{R_{22}}}{\partial{n_k}}Y+\cfrac{\partial{R_{23}}}{\partial{n_k}}Z)(R_{31}X+R_{32}Y+R_{33}Z+t_3)-(R_{21}X+R_{22}Y+R_{23}Z+t_2)(\cfrac{\partial{R_{31}}}{\partial{n_k}}X+\cfrac{\partial{R_{32}}}{\partial{n_k}}Y+\cfrac{\partial{R_{33}}}{\partial{n_k}}Z)}{(R_{31}X+R_{32}Y+R_{33}Z+t_3)^2} \\ k=1,2,3\tag{9} nkG=fy(R31X+R32Y+R33Z+t3)2(nkR21X+nkR22Y+nkR23Z)(R31X+R32Y+R33Z+t3)(R21X+R22Y+R23Z+t2)(nkR31X+nkR32Y+nkR33Z)k=1,2,3(9)可以看出来问题的关键就是求出 ∂ R i j ∂ n k , i = 1 , 2 , 3 , j = 1 , 2 , 3 。 \cfrac{\partial{R_{ij}}}{\partial{n_k}},i=1,2,3,j=1,2,3。 nkRiji=1,2,3,j=1,2,3这27个导数
根据罗德里格斯公式 R = I cos ⁡ θ + ( 1 − cos ⁡ θ ) [ r x r y r z ] [ r x r y r z ] + sin ⁡ θ [ 0 − r z r y r z 0 − r x − r y r x 0 ] (10) R=I\cos\theta+(1-\cos\theta)\begin{bmatrix} r_x\\r_y\\r_z \end{bmatrix}\begin{bmatrix} r_x&r_y&r_z \end{bmatrix}+\sin\theta \begin{bmatrix} 0 & -r_z& r_y\\ r_z & 0 & -r_x \\ -r_y & r_x & 0\end{bmatrix}\tag{10} R=Icosθ+(1cosθ) rxryrz [rxryrz]+sinθ 0rzryrz0rxryrx0 (10)旋转向量 R = ( n 1 , n 2 , n 3 ) = θ ( r x , r y , r z ) R=(n_1,n_2,n_3)=\theta(r_x,r_y,r_z) R=(n1,n2,n3)=θ(rx,ry,rz) r x , r y , r z r_x,r_y,r_z rx,ry,rz为单位向量,对应着旋转的轴
θ = n 1 2 + n 2 2 + n 3 2 (11) \theta=\sqrt{n_1^2+n_2^2+n_3^2}\tag{11} θ=n12+n22+n32 (11)为旋转的角度,那么旋转矩阵可以表达为
R = [ R 11 R 12 R 13 R 21 R 22 R 23 R 31 R 32 R 33 ] = [ r x 2 ( 1 − cos ⁡ θ ) + cos ⁡ θ r x r y ( 1 − cos ⁡ θ ) − r z sin ⁡ θ r x r z ( 1 − cos ⁡ θ ) + r y sin ⁡ θ r x r y ( 1 − cos ⁡ θ ) + r z sin ⁡ θ r y 2 ( 1 − cos ⁡ θ ) + cos ⁡ θ r y r z ( 1 − cos ⁡ θ ) − r x sin ⁡ θ r x r z ( 1 − cos ⁡ θ ) − r y sin ⁡ θ r y r z ( 1 − cos ⁡ θ ) + r x sin ⁡ θ r z 2 ( 1 − cos ⁡ θ ) + cos ⁡ θ ] (12) R= \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \\ \end{bmatrix} = \begin{bmatrix} r_x^2(1-\cos\theta)+\cos\theta & r_xr_y(1-\cos\theta)-r_z\sin\theta & r_xr_z(1-\cos\theta)+r_y\sin\theta \\ r_xr_y(1-\cos\theta)+r_z\sin\theta & r_y^2(1-\cos\theta)+\cos\theta & r_yr_z(1-\cos\theta)-r_x\sin\theta \\ r_xr_z(1-\cos\theta)-r_y\sin\theta & r_yr_z(1-\cos\theta)+r_x\sin\theta & r_z^2(1-\cos\theta)+\cos\theta \end{bmatrix} \tag{12} R= R11R21R31R12R22R32R13R23R33 = rx2(1cosθ)+cosθrxry(1cosθ)+rzsinθrxrz(1cosθ)rysinθrxry(1cosθ)rzsinθry2(1cosθ)+cosθryrz(1cosθ)+rxsinθrxrz(1cosθ)+rysinθryrz(1cosθ)rxsinθrz2(1cosθ)+cosθ (12)利用复合函数的求导性质可知 ∂ R 11 ∂ n 1 = ∂ R 11 ∂ r x ∂ r x ∂ n 1 + ∂ R 11 ∂ r y ∂ r y ∂ n 1 + ∂ R 11 ∂ r z ∂ r z ∂ n 1 + ∂ R 11 ∂ θ ∂ θ ∂ n 1 (13) \cfrac{\partial{R_{11}}}{\partial{n_1}}=\cfrac{\partial{R_{11}}}{\partial{r_x}}\cfrac{\partial{r_x}}{\partial{n_1}}+\cfrac{\partial{R_{11}}}{\partial{r_y}}\cfrac{\partial{r_y}}{\partial{n_1}}+\cfrac{\partial{R_{11}}}{\partial{r_z}}\cfrac{\partial{r_z}}{\partial{n_1}}+\cfrac{\partial{R_{11}}}{\partial{\theta}}\cfrac{\partial{\theta}}{\partial{n_1}}\tag{13} n1R11=rxR11n1rx+ryR11n1ry+rzR11n1rz+θR11n1θ(13)写成通用形式就是 ∂ R i j ∂ n k = ∂ R i j ∂ r x ∂ r x ∂ n k + ∂ R i j ∂ r y ∂ r y ∂ n k + ∂ R i j ∂ r z ∂ r z ∂ n k + ∂ R i j ∂ θ ∂ θ ∂ n k i = 1 , 2 , 3 , j = 1 , 2 , 3 , k = 1 , 2 , 3 (14) \cfrac{\partial{R_{ij}}}{\partial{n_k}}=\cfrac{\partial{R_{ij}}}{\partial{r_x}}\cfrac{\partial{r_x}}{\partial{n_k}}+\cfrac{\partial{R_{ij}}}{\partial{r_y}}\cfrac{\partial{r_y}}{\partial{n_k}}+\cfrac{\partial{R_{ij}}}{\partial{r_z}}\cfrac{\partial{r_z}}{\partial{n_k}}+\cfrac{\partial{R_{ij}}}{\partial{\theta}}\cfrac{\partial{\theta}}{\partial{n_k}} \\i=1,2,3,j=1,2,3,k=1,2,3\tag{14} nkRij=rxRijnkrx+ryRijnkry+rzRijnkrz+θRijnkθi=1,2,3,j=1,2,3,k=1,2,3(14)根据式(12)每个 R i j R_{ij} Rij对应分量已知,求导为 ∂ R i j ∂ r x = [ 2 r x ( 1 − cos ⁡ θ ) r y ( 1 − cos ⁡ θ ) r z ( 1 − cos ⁡ θ ) r y ( 1 − cos ⁡ θ ) 0 − sin ⁡ θ r z ( 1 − cos ⁡ θ ) sin ⁡ θ 0 ] (15) \cfrac{\partial{R_{ij}}}{\partial{r_x}}= \begin{bmatrix} 2r_x(1-\cos\theta) & r_y(1-\cos\theta)& r_z(1-\cos\theta) \\ r_y(1-\cos\theta) & 0 & -\sin\theta \\ r_z(1-\cos\theta) & \sin\theta & 0 \end{bmatrix}\tag{15} rxRij= 2rx(1cosθ)ry(1cosθ)rz(1cosθ)ry(1cosθ)0sinθrz(1cosθ)sinθ0 (15) ∂ R i j ∂ r y = [ 0 r x ( 1 − cos ⁡ θ ) sin ⁡ θ r x ( 1 − cos ⁡ θ ) 2 r y ( 1 − cos ⁡ θ ) r z ( 1 − cos ⁡ θ ) − sin ⁡ θ r z ( 1 − cos ⁡ θ ) 0 ] (16) \cfrac{\partial{R_{ij}}}{\partial{r_y}}= \begin{bmatrix} 0 & r_x(1-\cos\theta)& \sin\theta \\ r_x(1-\cos\theta) &2r_y(1-\cos\theta) & r_z(1-\cos\theta) \\ -\sin\theta & r_z(1-\cos\theta)& 0 \end{bmatrix}\tag{16} ryRij= 0rx(1cosθ)sinθrx(1cosθ)2ry(1cosθ)rz(1cosθ)sinθrz(1cosθ)0 (16) ∂ R i j ∂ r z = [ 0 − sin ⁡ θ r x ( 1 − cos ⁡ θ ) sin ⁡ θ 0 r y ( 1 − cos ⁡ θ ) r x ( 1 − cos ⁡ θ ) r y ( 1 − cos ⁡ θ ) 2 r z ( 1 − cos ⁡ θ ) ] (17) \cfrac{\partial{R_{ij}}}{\partial{r_z}}= \begin{bmatrix} 0 &- \sin\theta & r_x(1-\cos\theta) \\ \sin\theta &0 &r_y(1-\cos\theta) \\ r_x(1-\cos\theta)& r_y(1-\cos\theta)& 2r_z(1-\cos\theta) \end{bmatrix}\tag{17} rzRij= 0sinθrx(1cosθ)sinθ0ry(1cosθ)rx(1cosθ)ry(1cosθ)2rz(1cosθ) (17) ∂ r i ∂ n k = 1 θ [ ( 1 − r x 2 ) − r x r y − r x r z − r x r y ( 1 − r y 2 ) − r y r z − r x r z − r y r z ( 1 − r z 2 ) ] (18) \cfrac{\partial{r_i}}{\partial{n_k}}=\cfrac{1}{\theta} \begin{bmatrix} (1-r_x^2) & -r_xr_y& -r_xr_z \\ -r_xr_y & (1-r_y^2) & -r_yr_z \\ -r_xr_z& -r_yr_z &(1-r_z^2) \end{bmatrix}\tag{18} nkri=θ1 (1rx2)rxryrxrzrxry(1ry2)ryrzrxrzryrz(1rz2) (18) ∂ R i j ∂ θ = [ sin ⁡ θ ( r x 2 − 1 ) r x r y sin ⁡ θ − r z cos ⁡ θ r x r z sin ⁡ θ + r y cos ⁡ θ r x r y sin ⁡ θ + r z cos ⁡ θ sin ⁡ θ ( r y 2 − 1 ) r y r z sin ⁡ θ − r x cos ⁡ θ r x r z sin ⁡ θ − r y cos ⁡ θ r y r z sin ⁡ θ + r x cos ⁡ θ sin ⁡ θ ( r z 2 − 1 ) ] (19) \cfrac{\partial{R_{ij}}}{\partial{\theta}}= \begin{bmatrix} \sin\theta(r_x^2-1)& r_xr_y\sin\theta-r_z\cos\theta& r_xr_z\sin\theta+r_y\cos\theta \\ r_xr_y\sin\theta+r_z\cos\theta & \sin\theta(r_y^2-1)&r_yr_z\sin\theta-r_x\cos\theta \\ r_xr_z\sin\theta-r_y\cos\theta& r_yr_z\sin\theta+r_x\cos\theta& \sin\theta(r_z^2-1) \end{bmatrix}\tag{19} θRij= sinθ(rx21)rxrysinθ+rzcosθrxrzsinθrycosθrxrysinθrzcosθsinθ(ry21)ryrzsinθ+rxcosθrxrzsinθ+rycosθryrzsinθrxcosθsinθ(rz21) (19) ∂ θ ∂ n k = [ r x r y r z ] (20) \cfrac{\partial{\theta}}{\partial{n_k}}= \begin{bmatrix} r_x & r_y &r_z \end{bmatrix} \tag{20} nkθ=[rxryrz](20)结合式(15)~(20)带入式(14)中得到我们需要的 ∂ R i j ∂ n k \cfrac{\partial{R_{ij}}}{\partial{n_k}} nkRij,进一步的带入式(8)和(9)中完成对旋转分量的求解。

对平移向量求导

对平移向量的求导要简单很多,因为不涉及符合函数,根据式(4)可知, ∂ F ∂ t 1 = f x 1 R 31 X + R 32 Y + R 33 Z + t 3 (21) \cfrac{\partial{F}}{\partial{t_1}}=f_x\cfrac{1}{R_{31}X+R_{32}Y+R_{33}Z+t_3}\tag{21} t1F=fxR31X+R32Y+R33Z+t31(21) ∂ F ∂ t 2 = 0 (22) \cfrac{\partial{F}}{\partial{t_2}}=0\tag{22} t2F=0(22) ∂ F ∂ t 3 = f x − ( R 11 X + R 12 Y + R 13 Z + t 1 ) ( R 31 X + R 32 Y + R 33 Z + t 3 ) 2 (23) \cfrac{\partial{F}}{\partial{t_3}}=f_x\cfrac{-(R_{11}X+R_{12}Y+R_{13}Z+t_1)}{(R_{31}X+R_{32}Y+R_{33}Z+t_3)^2}\tag{23} t3F=fx(R31X+R32Y+R33Z+t3)2(R11X+R12Y+R13Z+t1)(23)同理 ∂ G ∂ t 1 = 0 (24) \cfrac{\partial{G}}{\partial{t_1}}=0\tag{24} t1G=0(24) ∂ G ∂ t 2 = f y 1 R 31 X + R 32 Y + R 33 Z + t 3 (25) \cfrac{\partial{G}}{\partial{t_2}}=f_y\cfrac{1}{R_{31}X+R_{32}Y+R_{33}Z+t_3}\tag{25} t2G=fyR31X+R32Y+R33Z+t31(25) ∂ G ∂ t 3 = f y − ( R 21 X + R 22 Y + R 23 Z + t 2 ) ( R 31 X + R 32 Y + R 33 Z + t 3 ) 2 (26) \cfrac{\partial{G}}{\partial{t_3}}=f_y\cfrac{-(R_{21}X+R_{22}Y+R_{23}Z+t_2)}{(R_{31}X+R_{32}Y+R_{33}Z+t_3)^2}\tag{26} t3G=fy(R31X+R32Y+R33Z+t3)2(R21X+R22Y+R23Z+t2)(26)综上对旋转向量和平移向量的求导,带入式(6)中,即可进行LM迭代算法,代码中LM计算在
bool proceed = solver.update( __param, matJ, _err );
该函数中子函数void CvLevMarq::step()是求解的核心部分,得到式(5)的变量增量,以进行逐步迭代优化得到最终的6个外参数量。至此,四个篇章就完成cvFindExtrinsicCameraParams2对外参数估计原理解析的全部过程。中间的求导如有错误请在评论区纠正,毕竟我没有把所有的数和opencv代码进行核对,这个有时间会进行逐个元素核对。

代码注释

本文对应的主要代码段是

CV_IMPL void cvFindExtrinsicCameraParams2( const CvMat* objectPoints,
                  const CvMat* imagePoints, const CvMat* A,
                  const CvMat* distCoeffs, CvMat* rvec, CvMat* tvec,
                  int useExtrinsicGuess )
{
    const int max_iter = 20;
    Ptr<CvMat> matM, _Mxy, _m, _mn, matL;

    int i, count;
    double a[9], ar[9]={1,0,0,0,1,0,0,0,1}, R[9];
    double MM[9], U[9], V[9], W[3];
    CvScalar Mc;
    double param[6];
    CvMat matA = cvMat( 3, 3, CV_64F, a );
    CvMat _Ar = cvMat( 3, 3, CV_64F, ar );
    CvMat matR = cvMat( 3, 3, CV_64F, R );
    CvMat _r = cvMat( 3, 1, CV_64F, param );
    CvMat _t = cvMat( 3, 1, CV_64F, param + 3 );
    CvMat _Mc = cvMat( 1, 3, CV_64F, Mc.val );
    CvMat _MM = cvMat( 3, 3, CV_64F, MM );
    CvMat matU = cvMat( 3, 3, CV_64F, U );
    CvMat matV = cvMat( 3, 3, CV_64F, V );
    CvMat matW = cvMat( 3, 1, CV_64F, W );
    CvMat _param = cvMat( 6, 1, CV_64F, param );
    CvMat _dpdr, _dpdt;

	//** 省略初始值估计的代码
	
    // refine extrinsic parameters using iterative algorithm
    CvLevMarq solver( 6, count*2, cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,max_iter,FLT_EPSILON), true);
    cvCopy( &_param, solver.param );
	//** 开始迭代计算
    for(;;)
    {
        CvMat *matJ = 0, *_err = 0;
        const CvMat *__param = 0;
        //** LM算法求解迭代的增量,见式(5)
        bool proceed = solver.update( __param, matJ, _err );
        cvCopy( __param, &_param );
        if( !proceed || !_err )
            break;
        cvReshape( _err, _err, 2, 1 );
        if( matJ )
        {
            cvGetCols( matJ, &_dpdr, 0, 3 );
            cvGetCols( matJ, &_dpdt, 3, 6 );
            //** 求解LM中的雅可比矩阵J
            cvProjectPoints2( matM, &_r, &_t, &matA, distCoeffs,
                              _err, &_dpdr, &_dpdt, 0, 0, 0 );
        }
        else
        {
            cvProjectPoints2( matM, &_r, &_t, &matA, distCoeffs,
                              _err, 0, 0, 0, 0, 0 );
        }
        //** 在此处将投影点与图像识别点做偏差,构成err矩阵
        cvSub(_err, _m, _err);
        cvReshape( _err, _err, 1, 2*count );
    }
    cvCopy( solver.param, &_param );

    _r = cvMat( rvec->rows, rvec->cols,
        CV_MAKETYPE(CV_64F,CV_MAT_CN(rvec->type)), param );
    _t = cvMat( tvec->rows, tvec->cols,
        CV_MAKETYPE(CV_64F,CV_MAT_CN(tvec->type)), param + 3 );

    cvConvert( &_r, rvec );
    cvConvert( &_t, tvec );
}

对cvProjectPoints2函数求解雅可比矩阵相关部分的注解

CV_IMPL void cvProjectPoints2( const CvMat* objectPoints,
                  const CvMat* r_vec,
                  const CvMat* t_vec,
                  const CvMat* A,
                  const CvMat* distCoeffs,
                  CvMat* imagePoints, CvMat* dpdr,
                  CvMat* dpdt, CvMat* dpdf,
                  CvMat* dpdc, CvMat* dpdk,
                  double aspectRatio )
{
    Ptr<CvMat> matM, _m;
    Ptr<CvMat> _dpdr, _dpdt, _dpdc, _dpdf, _dpdk;

    int i, j, count;
    int calc_derivatives;
    const CvPoint3D64f* M;
    CvPoint2D64f* m;
    double r[3], R[9], dRdr[27], t[3], a[9], k[14] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0}, fx, fy, cx, cy;
    Matx33d matTilt = Matx33d::eye();
    Matx33d dMatTiltdTauX(0,0,0,0,0,0,0,-1,0);
    Matx33d dMatTiltdTauY(0,0,0,0,0,0,1,0,0);
    CvMat _r, _t, _a = cvMat( 3, 3, CV_64F, a ), _k;
    CvMat matR = cvMat( 3, 3, CV_64F, R ), _dRdr = cvMat( 3, 9, CV_64F, dRdr );
    double *dpdr_p = 0, *dpdt_p = 0, *dpdk_p = 0, *dpdf_p = 0, *dpdc_p = 0;
    int dpdr_step = 0, dpdt_step = 0, dpdk_step = 0, dpdf_step = 0, dpdc_step = 0;
    bool fixedAspectRatio = aspectRatio > FLT_EPSILON;

  	//**省略

    if( r_vec->rows == 3 && r_vec->cols == 3 )
    {
        _r = cvMat( 3, 1, CV_64FC1, r );
        cvRodrigues2( r_vec, &_r );
        cvRodrigues2( &_r, &matR, &_dRdr );
        cvCopy( r_vec, &matR );
    }
    else
    {
        _r = cvMat( r_vec->rows, r_vec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(r_vec->type)), r );
        cvConvert( r_vec, &_r );
        // **旋转矩阵的每一个分量对旋转向量求导,见式(15~20)
        cvRodrigues2( &_r, &matR, &_dRdr );
    }

   //** 省略

    calc_derivatives = dpdr || dpdt || dpdf || dpdc || dpdk;

    for( i = 0; i < count; i++ )
    {
        double X = M[i].x, Y = M[i].y, Z = M[i].z;
        double x = R[0]*X + R[1]*Y + R[2]*Z + t[0];
        double y = R[3]*X + R[4]*Y + R[5]*Z + t[1];
        double z = R[6]*X + R[7]*Y + R[8]*Z + t[2];
        double r2, r4, r6, a1, a2, a3, cdist, icdist2;
        double xd, yd, xd0, yd0, invProj;
        Vec3d vecTilt;
        Vec3d dVecTilt;
        Matx22d dMatTilt;
        Vec2d dXdYd;

        z = z ? 1./z : 1;
        x *= z; y *= z;
		
        r2 = x*x + y*y;
        r4 = r2*r2;
        r6 = r4*r2;
        a1 = 2*x*y;
        a2 = r2 + 2*x*x;
        a3 = r2 + 2*y*y;
        cdist = 1 + k[0]*r2 + k[1]*r4 + k[4]*r6;
        icdist2 = 1./(1 + k[5]*r2 + k[6]*r4 + k[7]*r6);
        xd0 = x*cdist*icdist2 + k[2]*a1 + k[3]*a2 + k[8]*r2+k[9]*r4;
        yd0 = y*cdist*icdist2 + k[2]*a3 + k[3]*a1 + k[10]*r2+k[11]*r4;

        // additional distortion by projecting onto a tilt plane
        vecTilt = matTilt*Vec3d(xd0, yd0, 1);
        invProj = vecTilt(2) ? 1./vecTilt(2) : 1;
        xd = invProj * vecTilt(0);
        yd = invProj * vecTilt(1);
		//**根据当前参数在图像上的投影点,在其他地方会和图像识别的点求偏差,构成err矩阵
        m[i].x = xd*fx + cx;
        m[i].y = yd*fy + cy;

        if( calc_derivatives )
        {       
			//**省略内参求导
			//**对平移分量求导
            if( dpdt_p )
            {
                double dxdt[] = { z, 0, -x*z }, dydt[] = { 0, z, -y*z };
                for( j = 0; j < 3; j++ )
                {
                    double dr2dt = 2*x*dxdt[j] + 2*y*dydt[j];
                    double dcdist_dt = k[0]*dr2dt + 2*k[1]*r2*dr2dt + 3*k[4]*r4*dr2dt;
                    double dicdist2_dt = -icdist2*icdist2*(k[5]*dr2dt + 2*k[6]*r2*dr2dt + 3*k[7]*r4*dr2dt);
                    double da1dt = 2*(x*dydt[j] + y*dxdt[j]);
                    double dmxdt = (dxdt[j]*cdist*icdist2 + x*dcdist_dt*icdist2 + x*cdist*dicdist2_dt +
                                       k[2]*da1dt + k[3]*(dr2dt + 4*x*dxdt[j]) + k[8]*dr2dt + 2*r2*k[9]*dr2dt);
                    double dmydt = (dydt[j]*cdist*icdist2 + y*dcdist_dt*icdist2 + y*cdist*dicdist2_dt +
                                       k[2]*(dr2dt + 4*y*dydt[j]) + k[3]*da1dt + k[10]*dr2dt + 2*r2*k[11]*dr2dt);
                    dXdYd = dMatTilt*Vec2d(dmxdt, dmydt);
                    dpdt_p[j] = fx*dXdYd(0);
                    dpdt_p[dpdt_step+j] = fy*dXdYd(1);
                }
                dpdt_p += dpdt_step*2;
            }
			//**对旋转分量求导
            if( dpdr_p )
            {
                double dx0dr[] =
                {
                    X*dRdr[0] + Y*dRdr[1] + Z*dRdr[2],
                    X*dRdr[9] + Y*dRdr[10] + Z*dRdr[11],
                    X*dRdr[18] + Y*dRdr[19] + Z*dRdr[20]
                };
                double dy0dr[] =
                {
                    X*dRdr[3] + Y*dRdr[4] + Z*dRdr[5],
                    X*dRdr[12] + Y*dRdr[13] + Z*dRdr[14],
                    X*dRdr[21] + Y*dRdr[22] + Z*dRdr[23]
                };
                double dz0dr[] =
                {
                    X*dRdr[6] + Y*dRdr[7] + Z*dRdr[8],
                    X*dRdr[15] + Y*dRdr[16] + Z*dRdr[17],
                    X*dRdr[24] + Y*dRdr[25] + Z*dRdr[26]
                };
                for( j = 0; j < 3; j++ )
                {
                    double dxdr = z*(dx0dr[j] - x*dz0dr[j]);
                    double dydr = z*(dy0dr[j] - y*dz0dr[j]);
                    double dr2dr = 2*x*dxdr + 2*y*dydr;
                    double dcdist_dr = (k[0] + 2*k[1]*r2 + 3*k[4]*r4)*dr2dr;
                    double dicdist2_dr = -icdist2*icdist2*(k[5] + 2*k[6]*r2 + 3*k[7]*r4)*dr2dr;
                    double da1dr = 2*(x*dydr + y*dxdr);
                    double dmxdr = (dxdr*cdist*icdist2 + x*dcdist_dr*icdist2 + x*cdist*dicdist2_dr +
                                       k[2]*da1dr + k[3]*(dr2dr + 4*x*dxdr) + (k[8] + 2*r2*k[9])*dr2dr);
                    double dmydr = (dydr*cdist*icdist2 + y*dcdist_dr*icdist2 + y*cdist*dicdist2_dr +
                                       k[2]*(dr2dr + 4*y*dydr) + k[3]*da1dr + (k[10] + 2*r2*k[11])*dr2dr);
                    dXdYd = dMatTilt*Vec2d(dmxdr, dmydr);
                    dpdr_p[j] = fx*dXdYd(0);
                    dpdr_p[dpdr_step+j] = fy*dXdYd(1);
                }
                dpdr_p += dpdr_step*2;
            }
        }
    }

    if( _m != imagePoints )
        cvConvert( _m, imagePoints );

    if( _dpdr != dpdr )
        cvConvert( _dpdr, dpdr );

    if( _dpdt != dpdt )
        cvConvert( _dpdt, dpdt );

    if( _dpdf != dpdf )
        cvConvert( _dpdf, dpdf );

    if( _dpdc != dpdc )
        cvConvert( _dpdc, dpdc );

    if( _dpdk != dpdk )
        cvConvert( _dpdk, dpdk );
}

你可能感兴趣的:(结构光三维重建,opencv,计算机视觉,算法)