ICT系统技术简介


【摘要】
信息化的体系化发展就是IT技术的不断细分,相辅相成,科技水平不断提升。总体来看,最基础的无外乎如下几个方面:(本文主要是个人对相关技术理解,仅做参考)
物联网:大数据的基础,采集人、事、物及之间互动的数据;
大数据:基于物联网的应用,人工智能的基础;
云计算:计算、存储、通讯工具,物联网、大数据和人工智能必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术才能形成行业级应用;
人工智能:大数据的最理想应用,反哺物联网。

ICT系统技术简介_第1张图片

 

第一节 物联网
     物联网(The Internet of Things)的概念是在1999年提出的,它的定义很简单:把所有物品通过射频识别等信息传感设备与互联网连接起来,实现智能化识别和管理。物联网通过智能感知、识别技术与普适计算、泛在网络的融合应用,被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。物联网被视为互联网的应用拓展,应用创新是物联网发展的核心,以用户体验为核心的创新2.0是物联网发展的灵魂。
     国际电信联盟2005年一份报告曾描绘“物联网”时代的图景:当司机出现操作失误时汽车会自动报警;公文包会提醒主人忘带了什么东西;衣服会“告诉”洗衣机对颜色和水温的要求等等。物联网把新一代IT技术充分运用在各行各业之中,具体地说,就是把感应器嵌入和装备到电网、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等各种物体中,然后将“物联网”与现有的互联网整合起来,实现人类社会与物理系统的整合,在这个整合的网络当中,存在能力超级强大的中心计算机群,能够对整合网络内的人员、机器、设备和基础设施实施实时的管理和控制,在此基础上,人类可以以更加精细和动态的方式管理生产和生活,达到“智慧”状态,提高资源利用率和生产力水平,改善人与自然间的关系。
毫无疑问,如果“物联网”时代来临,人们的日常生活将发生翻天覆地的变化。然而,不谈什么隐私权和辐射问题,单把所有物品都植入识别芯片这一点现在看来还不太现实。人们正走向“物联网”时代,但这个过程可能需要很长很长的时间。
第二节 大数据
     大数据是物联网、Web系统和信息系统发展的综合结果,其中物联网的影响最大,所以大数据也可以说是物联网发展的必然结果。大数据相关的技术紧紧围绕数据展开,包括数据的采集、整理、传输、存储、安全、分析、呈现和应用等等。目前,大数据的价值主要体现在分析和应用上,比如大数据场景分析等。
     大数据或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到提取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
      “大数据”的概念远不止大量的数据和处理大量数据的技术,或者所谓的"4个V"之类的简单概念,而是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。换句话说,大数据让我们以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力。

第三节 云计算
     云计算(cloud computing,台湾译作云端运算),是分布式计算技术的一种,其最基本的概念,是透过网络将庞大的计算处理程序自动分拆成无数个较小的子程序,再交由多部服务器所组成的庞大系统经搜寻、计算分析之后将处理结果回传给用户。透过这项技术,网络服务提供者可以在数秒之内,达成处理数以千万计甚至亿计的信息,达到和“超级计算机”同样强大效能的网络服务。
云计算是一种资源交付和使用模式,指通过网络获得应用所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取。这种特性经常被比喻为像水电一样使用硬件资源,按需购买和使用。
最简单的云计算技术在网络服务中已经随处可见,例如搜寻引擎、网络信箱等,使用者只要输入简单指令即能得到大量信息。
    未来如手机、GPS等行动装置都可以透过云计算技术,发展出更多的应用服务。进一步的云计算不仅只做资料搜寻、分析的功能,更可计算一些像是分析DNA结构、基因图谱定序、解析癌症细胞等。稍早之前的大规模分布式计算技术即为“云计算”的概念起源,主要提供的是网络,算力,存储等资源。

第四节 人工智能
      人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示等六大方向,目前机器学习的应用范围还是比较广泛的,比如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是目前人工智能研究的主流方向。
人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。
      人工智能是靠算法来消化大数据的,从这里来看算法就是人工智能的胃和消化系统,算法是负责读取和消化大数据同时也是结果产出。所以人工智能的核心是大数据,算法是关键。人们一般都是通过集成器,传感器,物联网来收集大数据的,从大数据的字面意思来说就是数据比较庞大,一般都要使用电脑才可以进行。所以根据以上的结论大数据,人工智能和机器人之间是相互联系而且独立的关系

第五节 总结
      大数据和人工智能虽然关注点并不相同,但是却有密切的联系,一方面人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。
      目前大数据相关技术已经趋于成熟,相关的理论体系已经逐步完善,而人工智能尚处在行业发展的初期,理论体系依然有巨大的发展空间。从学习的角度来说,如果从大数据开始学习是个不错的选择,从大数据过渡到人工智能也会相对比较容易。总的来说,两个技术之间并不存在孰优孰劣的问题,发展空间都非常大。
          物联网、大数据、人工智能、云计算,作为当今信息化的四大版块,它们之间有着本质的联系,具有融合的特质和趋势。从一个广义的人类智慧拟化的实体的视角看,它们是一个整体:物联网是这个实体的五官(眼睛、耳朵、鼻子和触觉);而大数据是这些触觉到的信息的汇集与存储(中枢神经);人工智能未来将是掌控这个实体的大脑;云计算可以看作是大脑指挥下的对于大数据的处理并进行应用(心脏)。


你可能感兴趣的:(ITC,行业,网络,人工智能,物联网)