目标检测中IOU和NMS的python实现

文章目录

  • 1、两个框的IOU
  • 2、多框IOU计算
  • 3、NMS

Non Maximum Suppression(NMS)在目标检测中应用广泛,主要是用于目标检测结果从多个重叠边界框中选出一个

1、两个框的IOU

IOU就是intersection over union,交比补,用来计算两个框之间重叠的比例。IOU的数学公式可以是如下:

iou = (target交prediction)/(target并prediction)

也就是:
iou(box1,box2) = intersection(box1,box2)/union(box1,box2)

如下图分别是交集和并集的示意图,蓝色是交集,橙色是并集

目标检测中IOU和NMS的python实现_第1张图片

用python实现两个框的iou计算如下


import numpy as np

def iou(box1,box2):
    """
    box1:(x11,y11,x12,y12) 
    box2:(x21,y21,x22,y22)
    坐标是(左,上,右,下)
    """
    #find the area of box
    x11,y11,x12,y12 = box1
    x21,y21,x22,y22 = box2
    width1 =  np.maximum(0,x12-x11)
    height1 = np.maximum(0,y12-y11)
    width2  = np.maximum(0,x22-x21)
    height2 = np.maximum(0,y22-y21)
    area1 = width1*height1
    area2 = width2*height2
    #计算交集,需要计算交集部分的左、上、右、下坐标
    xi1 = np.maximum(x11,x21)
    yi1 = np.maximum(y11,y21)
    xi2 = np.minimum(x12,x22)
    yi2 = np.minimum(y12,y22)
    #计算交集部分面积
    w = np.maximum(0,xi2-xi1)
    h = np.maximum(0,yi2-yi1)
    intersection = w*h
    #计算并集
    union = area1+area2-intersection
    #计算iou
    iou = intersection/union
    return iou

测试一下结果:

box1=[1,1,3,3]
box2=[2,2,4,4]
a = iou(box1,box2)
print(a) #1/7=0.14285714285714285 

2、多框IOU计算

def compute_iou(boxes1,boxes2):
    """[Compute pairwise IOU matrix for given two sets of boxes]

    Args:
        boxes1 ([numpy ndarray with shape N,4]): [representing bounding boxes with format (xmin,ymin,xmax,ymax)]
        boxes2 ([numpy ndarray with shape M,4]): [representing bounding boxes with format (xmin,ymin,xmax,ymax)]
    Returns:
        pairwise IOU maxtrix with shape (N,M),where the value at ith row jth column hold the iou between ith
        box and jth box from box1 and box2 respectively.
    """
    lu = np.maximum(boxes1[:,None,:2],boxes2[:,:2]) #lu with shape N,M,2 ; boxes1[:,None,:2] with shape (N,1,2) boxes2 with shape(M,2)
    rd = np.minimum(boxes1[:,None,2:],boxes2[:,2:]) # rd same to lu
    intersection_wh = np.maximum(0.0,rd-lu)
    intersection_area = intersection_wh[:,:,0]*intersection_wh[:,:,1] #with shape (N,M)
    boxes1_wh = np.maximum(0.0,boxes1[:,2:]-boxes1[:,:2])
    boxes1_area = boxes1_wh[:,0]*boxes1_wh[:,1] #with shape (N,)
    boxes2_wh = np.maximum(0.0,boxes2[:,2:]-boxes2[:,:2])
    boxes2_area = boxes2_wh[:,0]*boxes2_wh[:,1] # with shape (M,)
    union_area = np.maximum(boxes1_area[:,None]+boxes2_area -intersection_area,1e-8) # with shape (N,M) 
    ious = np.clip(intersection_area/union_area,0.0,1.0)
    return ious

如下示例
目标检测中IOU和NMS的python实现_第2张图片
上图黑色是boxes1,另一种颜色是boxes2,计算结是为:

boxes1 = np.array([[3,2,16,12],[4,6,17,16]]).astype(np.float32)
boxes2 = np.array([[9,8,23,17],[12,5,24,13]]).astype(np.float32)
ious=compute_iou(boxes1,boxes2)
print(ious)
#[[0.12280702 0.14141414]
#[0.33333334 0.18324608]]

3、NMS

import numpy as np
def nms_boxes(boxes,nms_threshold):
    """
    Apply the Non-Maximum Suppression (NMS) algorithm on the bounding
        boxes with their confidence scores and return an array with the
        indexes of the bounding boxes we want to keep
    boxes: Nx7 numpy array of [[x1,y1,x2,y2,box_confidence,class_id,class_prob]...]

    """
    x1 = boxes[:,0]
    y1 = boxes[:,1]
    x2 = boxes[:,3]
    y2 = boxes[:,4]
    width = np.abs(x2-x1)
    height = np.abs(y2-y1)

    box_confidences = boxes[:,4]*boxes[:,6]
    areas = width*height

    ordered = box_confidences.argsort()[::-1] #从大到小
    
    keep = list()
    
    while ordered.size>0:
        # index of the current element
        i = ordered[0]
        keep.append(i)
        # 求当前最大分值框与各个其它框的交集
        xx1 = np.maximum(x1[i],x1[ordered[1:]])
        yy1 = np.maximum(y1[i],y1[ordered[1:]])
        xx2 = np.minimum(x2[i],x2[ordered[1:]])
        yy2 = np.minimum(y2[i],y2[ordered[1:]])
        
        width1 = np.maximum(0.0,xx2-xx1+1)
        height1 = np.maximum(0.0,yy2-yy1+1)
        intersection = width1*height1
        union = areas[i] + areas[ordered[1:]]-intersection
        iou = intersection/union
        indexes = np.where(iou<nms_threshold)[0]
        ordered = ordered[indexes+1]
        
    keep = np.array(keep)
    return keep

以上就是nms算法,最后返回所有要保留的索引,以yolov3为例,做一个全流程

def postprocess(yolov3_outputs,img_h,img_w,conf_th,nms_threshold):
    """[yolov3输出后处理]

    Args:
        yolov3_outputs ([type]): [a list of 3 tensors每一个tensor[N,7]的float32 numbers]
                        the order of [x, y, w, h, box_confidence, class_id, class_prob]
        img_h ([type]): [description]
        img_w ([type]): [description]
        conf_th ([type]): [description] confidence threshold
        nms_threshold ([type]): [description]
    Returns:
        boxes,scores,classes
    """
    #过滤低分值的结果并且把所有yolov3的结果合并起来
    detections =[]
    for o in yolov3_outputs:
        dets = o.reshape((-1,7))
        #分值是框的分值与分类分值的积
        dets = dets[dets[:,4]*dets[:,6]>=conf_th]
        detections.append(dets)
    detections = np.concatenate(detections,axis=0)
    if len(detections)==0:
        boxes = np.zeros((0,4),dtype = np.int32)
        scores = np.zeros((0,),dtype = np.float32)
        classes = np.zeros((0,),dtype=np.float32)
    else:
        box_scores = detections[:,4]*detections[:,6]
        
        # scale x, y, w, h from [0, 1] to pixel values
        
        old_h = img_h
        old_w = img_w
        detections[:,:4] *= np.array([old_w,old_h,old_w,old_h],dtype=np.float32)
        
        #convert x,y,w,h to x1,y1,x2,y2
        detections = np.concatenate([detections[:,:2]-detections[:,2:4]/2.0,detections[:,:2]-detections[:,2:4]/2.0,
                                    detections[:,:4:]],axis=-1)
        
        #按类NMS
        nms_detections = np.zeros((0,7),dtype=detections.dtype)
        
        for class_id in set(detections[:,5]):
            idxs = np.where(detectons[:,5]==class_id)
            cls_detections = detections[idxs]
            keep = nms_boxes(cls_detections,nms_threshold)
            nms_detections = np.concatenate([nms_detections,cls_detections[keep]],axis=0)
            
        boxes = nms_detections[:,:4]+0.5
        boxes = boxes.astype(np.int32) #shape:(N,)
        scores = nms_detections[:,4]*nms_detections[:,6] #shape:(N,)
        classes = nms_detections[:,5] #shape:(N,)
    return boxes,scores,classes
        

你可能感兴趣的:(目标检测,目标检测,python,计算机视觉,nms,iou)