python 不同格式的读取效率(pickle/npy/npz/hdf)

import numpy as np
import time
import pickle as pkl
import os
import tables

a1 = np.random.normal(size=[256, 4096])
label = np.random.normal(size=[256, 1])
all_batch = np.concatenate([a1, label], 1)
# 重新分割
# a1, a2 = np.split(all_batch, [-1], 1)

all_batches = []
for i in range(10):
    all_batches.append(all_batch)
all_batches = np.array(all_batches)
print(all_batches.shape)

np.random.normal
np.concatenate

(10, 256, 4097)

Pickle

s_t = time.time()
pkl_name = "a.pkl"
with open(pkl_name, "wb") as f:
    pkl.dump(all_batches, f)
pkl_in_time = time.time()-s_t
print("pkl dump costs {} sec".format(pkl_in_time))
s_t = time.time()
with open(pkl_name) as f:
    new_a = pkl.load(f)
pkl_out_time = time.time() - s_t
print("pkl load costs {} sec".format(pkl_out_time))
pkl_size = os.path.getsize(pkl_name)
print("pkl file size: {} byte, {} mb".format(pkl_size, float(pkl_size)/(1024*1024)))

pkl dump costs 4.71714997292 sec
pkl load costs 8.73846507072 sec
pkl file size: 248496184 byte, 236.984428406 mb

npy

s_t = time.time()
npy_name = "a.npy"
with open(npy_name, "wb") as f:
    np.save(f, arr=all_batches)
npy_in_time = time.time() - s_t
print("npy save costs {} sec".format(npy_in_time))
s_t = time.time()
with open(npy_name) as f:
    new_a = np.load(f)
npy_out_time = time.time() - s_t
print("npy load costs {} sec".format(npy_out_time))
npy_size = os.path.getsize(npy_name)
print("npy file size: {} byte, {} mb".format(npy_size, float(npy_size) / (1024 * 1024)))
npy save costs 0.0500998497009 sec
npy load costs 0.0170629024506 sec
npy file size: 83906640 byte, 80.0196075439 mb

npz

和python自带的zip方法的含义很像,意味着存储多个array,load的时候指定名称,比如data=arr1,label=arr2这样,取的时候,也不能只计算load的时间,因为这个load方法实际上没有把数据加到内存,只不过是返回一个文件io,读取要像使用dict一样指定名称。

s_t = time.time()
npz_name = "a.npz"
with open(npz_name, "wb") as f:
    np.savez(f, arr=all_batches)
npz_in_time = time.time() - s_t
print("npz save costs {} sec".format(npz_in_time))
s_t = time.time()
with open(npz_name) as f:
    npz_f= np.load(f)
    new_a = npz_f["arr"]
npz_out_time = time.time() - s_t
print("npz load costs {} sec".format(npz_out_time))
npz_size = os.path.getsize(npz_name)
print("npz file size: {} byte, {} mb".format(npz_size, float(npz_size) / (1024 * 1024)))

npz save costs 0.629067182541 sec
npz load costs 0.0908648967743 sec
npz file size: 83906752 byte, 80.0197143555 mb

hdf

HDF也是一种自描述格式文件,主要用于存储和分发科学数据。气象领域中卫星数据经常使用此格式,比如MODIS,OMI,LIS/OTD等卫星产品。

s_t = time.time()
table_name = "a.hdf"
f = tables.openFile(table_name, 'w')
atom = tables.Atom.from_dtype(all_batches.dtype)
ds = f.createCArray(f.root, 'test_a', atom, all_batches.shape)
ds[:] = all_batches
f.close()
table_in_time = time.time() - s_t
print("table save costs {} sec".format(table_in_time))
s_t = time.time()
f = tables.openFile(table_name, "r")
hdf5_data = f.root.test_a[:]
f.close()
table_out_time = time.time() - s_t
print("table load costs {} sec".format(table_out_time))
table_size = os.path.getsize(table_name)
print("table file size: {} byte, {} mb".format(table_size, float(table_size) / (1024 * 1024)))

table save costs 0.0691781044006 sec
table load costs 0.0298302173615 sec
table file size: 84613976 byte, 80.6941757202 mb

可视化对比结果

import seaborn
from matplotlib import pyplot as plt
plt.figure()
X = np.array(range(4))
Y_in = [pkl_in_time, npy_in_time, npz_in_time, table_in_time]
Y_out = [pkl_out_time, npy_out_time, npz_out_time, table_out_time]
print(Y_out)
plt.bar(X,Y_in,width = 0.35,facecolor = 'lightskyblue',edgecolor = 'white')
plt.bar(X+0.35,Y_out,width = 0.35,facecolor = 'yellowgreen',edgecolor = 'white')
#给图加text
for x,y in zip(X,Y_in):
    plt.text(x+0.2, y+0.05, '%.4f s' % y, ha='center', va= 'bottom')
for x,y in zip(X,Y_out):
    plt.text(x+0.6, y+0.05, '%.4f s' % y, ha='center', va= 'bottom')
plt.xticks([0,1,2,3],["pickle", "npy", "npz", "hdf"])
plt.figure()
Y_size = [pkl_size, npy_size, npz_size, table_size]
plt.bar(X+0.5,Y_size,width = 0.35,facecolor = 'red',edgecolor = 'white')
for x,y in zip(X,Y_size):
    plt.text(x+0.7, y+0.05, '%.0f mb' % (float(y)/(1024*1024)), ha='center', va= 'bottom')
plt.xticks([0.5,1.5,2.5,3.5],["pickle", "npy", "npz", "hdf"])
plt.xlim(0.0,5)
plt.show()
[8.738465070724487, 0.017062902450561523, 0.09086489677429199, 0.029830217361450195]

python 不同格式的读取效率(pickle/npy/npz/hdf)_第1张图片
python 不同格式的读取效率(pickle/npy/npz/hdf)_第2张图片

结论

  • Pickle:读写慢,而且占空间,如果存储的不是对象而是一个numpy数组,最好不要使用pickle;
  • npy:读写都快,占用空间少;
  • npz:写读相对慢一些,适用于保存多个array的情况;
  • hdf:读写相对都没有npy快,存储空间也没有优势,适用于分布式平台。

你可能感兴趣的:(Python,python)