python推荐算法课程_推荐系统算法的基本思路

注意:

1. 本行业案例课程为Python 3 数据分析系列课程的行业案例部分,学员请务必先观看课程介绍免费视频,确认已学习本课程所需Python分析技能。

2. 本课程的核心目的是协助学员学习具体业务场景下的解决方案,为降低学员学习难度,课程中均尽量使用简明易懂的代码进行数据整理和模型实现,没有出现任何晦涩高深的代码,并尽量基于pandas、sklearn等标准包接口编程。故此希望看到笔者在课程中炫技的各位编程高手请勿购买本系列课程。

请至PC端网页下载本课程代码课件及数据。

【课程简介】

推荐系统在当今的互联网行业中正在起到不可或缺的作用,本课程基于实际案例,由推荐系统的概念、框架、评估体系等入手,完整实现了推荐系统中应用的各类算法,包括协同过滤、矩阵分解、基于内容的推荐算法、结合文本挖掘(词频矩阵、TF-IDF、word2vec)的推荐算法、关联分析、聚类分析在推荐算法中的应用方式等,相关代码可作为分析模板供学员在工作中直接套用。

【课程特色】

可作为业务分析模板:课程内容完全基于真实业务分析场景构建,提供全部编写的函数工具和源代码,可直接作为同类业务场景中的业务分析模板加以使用。

双案例课程结构:充分考虑到案例代表性和分析需求上的差异化,精选电影评分和云音乐歌单数据这两个业务案例,分别代表rating和non-rating这两类推荐系统将会面对的典型数据类型,更有利于拓展学员的分析能力。

【课程长度】

总时长:12小时

python推荐算法课程_推荐系统算法的基本思路_第1张图片

python推荐算法课程_推荐系统算法的基本思路_第2张图片

你可能感兴趣的:(python推荐算法课程)