深度学习网络模型——EfficientNet V2模型详解与代码复现

深度学习网络模型——EfficientNet V2模型详解与代码复现

  • 1、EfficientNet V2概述
  • 2、项目代码:

1、EfficientNet V2概述


2、项目代码:

深度学习网络模型——EfficientNet V2模型详解与代码复现_第1张图片
model.py

from collections import OrderedDict
from functools import partial
from typing import Callable, Optional

import torch.nn as nn
import torch
from torch import Tensor


def drop_path(x, drop_prob: float = 0., training: bool = False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    "Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf

    This function is taken from the rwightman.
    It can be seen here:
    https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py#L140
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """
    Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    "Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


# 基础卷积-BN-激活模块
class ConvBNAct(nn.Module):
    def __init__(self,
                 in_planes: int,
                 out_planes: int,
                 kernel_size: int = 3,
                 stride: int = 1,
                 groups: int = 1,
                 norm_layer: Optional[Callable[..., nn.Module]] = None,
                 activation_layer: Optional[Callable[..., nn.Module]] = None):
        super(ConvBNAct, self).__init__()

        padding = (kernel_size - 1) // 2
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if activation_layer is None:
            activation_layer = nn.SiLU  # alias Swish  (torch>=1.7)

        self.conv = nn.Conv2d(in_channels=in_planes,
                              out_channels=out_planes,
                              kernel_size=kernel_size,
                              stride=stride,
                              padding=padding,
                              groups=groups,
                              bias=False)

        self.bn = norm_layer(out_planes)
        self.act = activation_layer()

    def forward(self, x):
        result = self.conv(x)
        result = self.bn(result)
        result = self.act(result)

        return result


# 构建SE模块
class SqueezeExcite(nn.Module):
    def __init__(self,
                 input_c: int,   # block input channel   其对应的是输入进MBConv模块的channel
                 expand_c: int,  # block expand channel   # 其对应的是输入进SE模块的channel
                 se_ratio: float = 0.25):
        super(SqueezeExcite, self).__init__()
        squeeze_c = int(input_c * se_ratio)
        self.conv_reduce = nn.Conv2d(expand_c, squeeze_c, 1)   # 此处利用卷积层实现全连接层的目的    此处的节点数是MBConv模块输入channel数的1/4
        self.act1 = nn.SiLU()  # alias Swish
        self.conv_expand = nn.Conv2d(squeeze_c, expand_c, 1)    # 此处利用卷积层实现全连接层的目的
        self.act2 = nn.Sigmoid()

    def forward(self, x: Tensor) -> Tensor:
        scale = x.mean((2, 3), keepdim=True)   # x.mean((2, 3)2,3分别对应着数据矩阵中的高与宽,对其求得均值
        scale = self.conv_reduce(scale)
        scale = self.act1(scale)
        scale = self.conv_expand(scale)
        scale = self.act2(scale)
        return scale * x

# 构建MBConv模块
class MBConv(nn.Module):
    def __init__(self,
                 kernel_size: int,
                 input_c: int,
                 out_c: int,
                 expand_ratio: int,
                 stride: int,
                 se_ratio: float,
                 drop_rate: float,
                 norm_layer: Callable[..., nn.Module]):
        super(MBConv, self).__init__()

        if stride not in [1, 2]:
            raise ValueError("illegal stride value.")

        self.has_shortcut = (stride == 1 and input_c == out_c)   # 判断是否进行shortcut连接

        activation_layer = nn.SiLU  # alias Swish
        expanded_c = input_c * expand_ratio   # 其对应的是MBConv模块中

        # 在EfficientNetV2中,MBConv中不存在expansion=1的情况所以conv_pw肯定存在
        assert expand_ratio != 1
        # Point-wise expansion
        self.expand_conv = ConvBNAct(input_c,
                                     expanded_c,
                                     kernel_size=1,
                                     norm_layer=norm_layer,
                                     activation_layer=activation_layer)

        # Depth-wise convolution
        self.dwconv = ConvBNAct(expanded_c,
                                expanded_c,
                                kernel_size=kernel_size,
                                stride=stride,
                                groups=expanded_c,
                                norm_layer=norm_layer,
                                activation_layer=activation_layer)

        # SE模块构建
        self.se = SqueezeExcite(input_c, expanded_c, se_ratio) if se_ratio > 0 else nn.Identity()

        # Point-wise linear projection
        self.project_conv = ConvBNAct(expanded_c,
                                      out_planes=out_c,
                                      kernel_size=1,
                                      norm_layer=norm_layer,
                                      activation_layer=nn.Identity)  # 注意这里没有激活函数,所有传入Identity

        self.out_channels = out_c

        # 只有在使用shortcut连接时才使用dropout层
        self.drop_rate = drop_rate
        if self.has_shortcut and drop_rate > 0:
            self.dropout = DropPath(drop_rate)

    def forward(self, x: Tensor) -> Tensor:
        result = self.expand_conv(x)
        result = self.dwconv(result)
        result = self.se(result)
        result = self.project_conv(result)

        if self.has_shortcut:
            if self.drop_rate > 0:
                result = self.dropout(result)
            result += x

        return result


# 构建FuseMBConv模块
class FusedMBConv(nn.Module):
    def __init__(self,
                 kernel_size: int,
                 input_c: int,
                 out_c: int,
                 expand_ratio: int,   #   在FusedMBConv模块内,有一层用于扩展维度的卷积层;如果expand_ratio不等于1,则有该层,等于1,则没有该层
                 stride: int,
                 se_ratio: float,
                 drop_rate: float,
                 norm_layer: Callable[..., nn.Module]):
        super(FusedMBConv, self).__init__()

        assert stride in [1, 2]
        assert se_ratio == 0

        self.has_shortcut = stride == 1 and input_c == out_c    # 判断是否进行shortCut连接
        self.drop_rate = drop_rate      # FuseMBCon模块中dropout层的丢弃率

        self.has_expansion = expand_ratio != 1      #   在FusedMBConv模块内,有一层用于扩展维度的卷积层;如果expand_ratio不等于1,则有该层,等于1,则没有该层

        activation_layer = nn.SiLU  # alias Swish
        expanded_c = input_c * expand_ratio    # 扩维后的输出维度

        # 只有当expand ratio不等于1时才有expand conv
        if self.has_expansion:  #   在FusedMBConv模块内,有一层用于扩展维度的卷积层;如果expand_ratio不等于1,则有该层,等于1,则没有该层
            # Expansion convolution
            self.expand_conv = ConvBNAct(input_c,
                                         expanded_c,
                                         kernel_size=kernel_size,
                                         stride=stride,
                                         norm_layer=norm_layer,
                                         activation_layer=activation_layer)

            self.project_conv = ConvBNAct(expanded_c,
                                          out_c,
                                          kernel_size=1,
                                          norm_layer=norm_layer,
                                          activation_layer=nn.Identity)  # 注意没有激活函数
        else:
            # 当只有project_conv时的情况
            self.project_conv = ConvBNAct(input_c,
                                          out_c,
                                          kernel_size=kernel_size,
                                          stride=stride,
                                          norm_layer=norm_layer,
                                          activation_layer=activation_layer)  # 注意有激活函数

        self.out_channels = out_c

        # 只有在使用shortcut连接时才使用dropout层
        self.drop_rate = drop_rate
        if self.has_shortcut and drop_rate > 0:
            self.dropout = DropPath(drop_rate)

    def forward(self, x: Tensor) -> Tensor:
        if self.has_expansion:  # 判断是否进行扩维
            result = self.expand_conv(x)
            result = self.project_conv(result)
        else:
            result = self.project_conv(x)

        if self.has_shortcut:
            if self.drop_rate > 0:
                result = self.dropout(result)

            result += x

        return result

# 构建EfficientNetV2网络模型基础结构
class EfficientNetV2(nn.Module):
    def __init__(self,
                 model_cnf: list,
                 num_classes: int = 1000,
                 num_features: int = 1280,     # stage7中卷积层的节点数
                 dropout_rate: float = 0.2,   #  其为stage7中Pooling层与全连接层间的dropout层的丢弃率
                 drop_connect_rate: float = 0.2):
        super(EfficientNetV2, self).__init__()

        for cnf in model_cnf:
            assert len(cnf) == 8   # 进行断言

        norm_layer = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.1)

        stem_filter_num = model_cnf[0][4]   # stage0,第一层卷积层的输出channel数,即节点数

        # 构建stage0,第一层卷积层
        self.stem = ConvBNAct(3,
                              stem_filter_num,
                              kernel_size=3,
                              stride=2,
                              norm_layer=norm_layer)  # 激活函数默认是SiLU

        total_blocks = sum([i[0] for i in model_cnf])    # 将各个stage1到stage6重复次数进行相加汇总,用于设置模块中dropout层的丢弃率
        block_id = 0
        blocks = []

        # 搭建stage1到stage6网络结构
        for cnf in model_cnf:
            repeats = cnf[0]   # 各个stage重复次数
            op = FusedMBConv if cnf[-2] == 0 else MBConv     # 如果为0,则使用Fused_MBConv模块;如果为1,则使用MBCone模块
            for i in range(repeats):
                blocks.append(op(kernel_size=cnf[1],
                                 input_c=cnf[4] if i == 0 else cnf[5],   # 各stage1到stage6模块中,第一个repeat的输入channel是cnf[4],其余的都是cnf[5]
                                 out_c=cnf[5],
                                 expand_ratio=cnf[3],
                                 stride=cnf[2] if i == 0 else 1,  # 各stage1到stage6模块中,第一个repeat的步长是cnf[2],其余步长都是1
                                 se_ratio=cnf[-1],
                                 drop_rate=drop_connect_rate * block_id / total_blocks,
                                 norm_layer=norm_layer))
                block_id += 1
        self.blocks = nn.Sequential(*blocks)

        head_input_c = model_cnf[-1][-3]
        head = OrderedDict()

        head.update({"project_conv": ConvBNAct(head_input_c,
                                               num_features,
                                               kernel_size=1,
                                               norm_layer=norm_layer)})  # 激活函数默认是SiLU

        head.update({"avgpool": nn.AdaptiveAvgPool2d(1)})
        head.update({"flatten": nn.Flatten()})

        if dropout_rate > 0:
            head.update({"dropout": nn.Dropout(p=dropout_rate, inplace=True)})
        head.update({"classifier": nn.Linear(num_features, num_classes)})

        self.head = nn.Sequential(head)

        # initial weights
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def forward(self, x: Tensor) -> Tensor:
        x = self.stem(x)
        x = self.blocks(x)
        x = self.head(x)

        return x


def efficientnetv2_s(num_classes: int = 1000):
    """
    EfficientNetV2
    https://arxiv.org/abs/2104.00298
    """
    # train_size: 300, eval_size: 384

    # repeat, kernel, stride, expansion, in_c, out_c, operator(如果为0,则使用Fused_MBConv模块;如果为1,则使用MBCone模块), se_ratio
    model_config = [[2, 3, 1, 1, 24, 24, 0, 0],
                    [4, 3, 2, 4, 24, 48, 0, 0],
                    [4, 3, 2, 4, 48, 64, 0, 0],
                    [6, 3, 2, 4, 64, 128, 1, 0.25],
                    [9, 3, 1, 6, 128, 160, 1, 0.25],
                    [15, 3, 2, 6, 160, 256, 1, 0.25]]

    model = EfficientNetV2(model_cnf=model_config,
                           num_classes=num_classes,
                           dropout_rate=0.2)
    return model


def efficientnetv2_m(num_classes: int = 1000):
    """
    EfficientNetV2
    https://arxiv.org/abs/2104.00298
    """
    # train_size: 384, eval_size: 480

    # repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
    model_config = [[3, 3, 1, 1, 24, 24, 0, 0],
                    [5, 3, 2, 4, 24, 48, 0, 0],
                    [5, 3, 2, 4, 48, 80, 0, 0],
                    [7, 3, 2, 4, 80, 160, 1, 0.25],
                    [14, 3, 1, 6, 160, 176, 1, 0.25],
                    [18, 3, 2, 6, 176, 304, 1, 0.25],
                    [5, 3, 1, 6, 304, 512, 1, 0.25]]

    model = EfficientNetV2(model_cnf=model_config,
                           num_classes=num_classes,
                           dropout_rate=0.3)
    return model


def efficientnetv2_l(num_classes: int = 1000):
    """
    EfficientNetV2
    https://arxiv.org/abs/2104.00298
    """
    # train_size: 384, eval_size: 480

    # repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
    model_config = [[4, 3, 1, 1, 32, 32, 0, 0],
                    [7, 3, 2, 4, 32, 64, 0, 0],
                    [7, 3, 2, 4, 64, 96, 0, 0],
                    [10, 3, 2, 4, 96, 192, 1, 0.25],
                    [19, 3, 1, 6, 192, 224, 1, 0.25],
                    [25, 3, 2, 6, 224, 384, 1, 0.25],
                    [7, 3, 1, 6, 384, 640, 1, 0.25]]

    model = EfficientNetV2(model_cnf=model_config,
                           num_classes=num_classes,
                           dropout_rate=0.4)
    return model

train.py

import os
import math
import argparse

import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
import torch.optim.lr_scheduler as lr_scheduler

from model import efficientnetv2_s as create_model
from my_dataset import MyDataSet
from utils import read_split_data, train_one_epoch, evaluate


def main(args):
    device = torch.device(args.device if torch.cuda.is_available() else "cpu")

    print(args)
    print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
    tb_writer = SummaryWriter()
    if os.path.exists("./weights") is False:
        os.makedirs("./weights")

    train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)

    img_size = {"s": [300, 384],  # train_size, val_size
                "m": [384, 480],
                "l": [384, 480]}
    num_model = "s"

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(img_size[num_model][0]),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
        "val": transforms.Compose([transforms.Resize(img_size[num_model][1]),
                                   transforms.CenterCrop(img_size[num_model][1]),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])}

    # 实例化训练数据集
    train_dataset = MyDataSet(images_path=train_images_path,
                              images_class=train_images_label,
                              transform=data_transform["train"])

    # 实例化验证数据集
    val_dataset = MyDataSet(images_path=val_images_path,
                            images_class=val_images_label,
                            transform=data_transform["val"])

    batch_size = args.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=nw,
                                               collate_fn=train_dataset.collate_fn)

    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=nw,
                                             collate_fn=val_dataset.collate_fn)

    # 如果存在预训练权重则载入
    model = create_model(num_classes=args.num_classes).to(device)
    if args.weights != "":
        if os.path.exists(args.weights):
            weights_dict = torch.load(args.weights, map_location=device)
            load_weights_dict = {k: v for k, v in weights_dict.items()
                                 if model.state_dict()[k].numel() == v.numel()}
            print(model.load_state_dict(load_weights_dict, strict=False))
        else:
            raise FileNotFoundError("not found weights file: {}".format(args.weights))

    # 是否冻结权重
    if args.freeze_layers:
        for name, para in model.named_parameters():
            # 除head外,其他权重全部冻结
            if "head" not in name:
                para.requires_grad_(False)
            else:
                print("training {}".format(name))

    pg = [p for p in model.parameters() if p.requires_grad]
    optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=1E-4)
    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

    for epoch in range(args.epochs):
        # train
        train_loss, train_acc = train_one_epoch(model=model,
                                                optimizer=optimizer,
                                                data_loader=train_loader,
                                                device=device,
                                                epoch=epoch)

        scheduler.step()

        # validate
        val_loss, val_acc = evaluate(model=model,
                                     data_loader=val_loader,
                                     device=device,
                                     epoch=epoch)

        tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]
        tb_writer.add_scalar(tags[0], train_loss, epoch)
        tb_writer.add_scalar(tags[1], train_acc, epoch)
        tb_writer.add_scalar(tags[2], val_loss, epoch)
        tb_writer.add_scalar(tags[3], val_acc, epoch)
        tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)

        torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--num_classes', type=int, default=5)
    parser.add_argument('--epochs', type=int, default=30)
    parser.add_argument('--batch-size', type=int, default=8)
    parser.add_argument('--lr', type=float, default=0.01)
    parser.add_argument('--lrf', type=float, default=0.01)

    # 数据集所在根目录
    # https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
    parser.add_argument('--data-path', type=str,
                        default="/data/flower_photos")

    # download model weights
    # 链接: https://pan.baidu.com/s/1uZX36rvrfEss-JGj4yfzbQ  密码: 5gu1
    parser.add_argument('--weights', type=str, default='./pre_efficientnetv2-s.pth',
                        help='initial weights path')
    parser.add_argument('--freeze-layers', type=bool, default=True)
    parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')

    opt = parser.parse_args()

    main(opt)

predict.py

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import efficientnetv2_s as create_model


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    img_size = {"s": [300, 384],  # train_size, val_size
                "m": [384, 480],
                "l": [384, 480]}
    num_model = "s"

    data_transform = transforms.Compose(
        [transforms.Resize(img_size[num_model][1]),
         transforms.CenterCrop(img_size[num_model][1]),
         transforms.ToTensor(),
         transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])

    # load image
    img_path = "../tulip.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    with open(json_path, "r") as f:
        class_indict = json.load(f)

    # create model
    model = create_model(num_classes=5).to(device)
    # load model weights
    model_weight_path = "./weights/model-29.pth"
    model.load_state_dict(torch.load(model_weight_path, map_location=device))
    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()


if __name__ == '__main__':
    main()


my_dataset.py

from PIL import Image
import torch
from torch.utils.data import Dataset


class MyDataSet(Dataset):
    """自定义数据集"""

    def __init__(self, images_path: list, images_class: list, transform=None):
        self.images_path = images_path
        self.images_class = images_class
        self.transform = transform

    def __len__(self):
        return len(self.images_path)

    def __getitem__(self, item):
        img = Image.open(self.images_path[item])
        # RGB为彩色图片,L为灰度图片
        if img.mode != 'RGB':
            raise ValueError("image: {} isn't RGB mode.".format(self.images_path[item]))
        label = self.images_class[item]

        if self.transform is not None:
            img = self.transform(img)

        return img, label

    @staticmethod
    def collate_fn(batch):
        # 官方实现的default_collate可以参考
        # https://github.com/pytorch/pytorch/blob/67b7e751e6b5931a9f45274653f4f653a4e6cdf6/torch/utils/data/_utils/collate.py
        images, labels = tuple(zip(*batch))

        images = torch.stack(images, dim=0)
        labels = torch.as_tensor(labels)
        return images, labels

utils.py

import os
import sys
import json
import pickle
import random

import torch
from tqdm import tqdm

import matplotlib.pyplot as plt


def read_split_data(root: str, val_rate: float = 0.2):
    random.seed(0)  # 保证随机结果可复现
    assert os.path.exists(root), "dataset root: {} does not exist.".format(root)

    # 遍历文件夹,一个文件夹对应一个类别
    flower_class = [cla for cla in os.listdir(root) if os.path.isdir(os.path.join(root, cla))]
    # 排序,保证各平台顺序一致
    flower_class.sort()
    # 生成类别名称以及对应的数字索引
    class_indices = dict((k, v) for v, k in enumerate(flower_class))
    json_str = json.dumps(dict((val, key) for key, val in class_indices.items()), indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    train_images_path = []  # 存储训练集的所有图片路径
    train_images_label = []  # 存储训练集图片对应索引信息
    val_images_path = []  # 存储验证集的所有图片路径
    val_images_label = []  # 存储验证集图片对应索引信息
    every_class_num = []  # 存储每个类别的样本总数
    supported = [".jpg", ".JPG", ".png", ".PNG"]  # 支持的文件后缀类型
    # 遍历每个文件夹下的文件
    for cla in flower_class:
        cla_path = os.path.join(root, cla)
        # 遍历获取supported支持的所有文件路径
        images = [os.path.join(root, cla, i) for i in os.listdir(cla_path)
                  if os.path.splitext(i)[-1] in supported]
        # 排序,保证各平台顺序一致
        images.sort()
        # 获取该类别对应的索引
        image_class = class_indices[cla]
        # 记录该类别的样本数量
        every_class_num.append(len(images))
        # 按比例随机采样验证样本
        val_path = random.sample(images, k=int(len(images) * val_rate))

        for img_path in images:
            if img_path in val_path:  # 如果该路径在采样的验证集样本中则存入验证集
                val_images_path.append(img_path)
                val_images_label.append(image_class)
            else:  # 否则存入训练集
                train_images_path.append(img_path)
                train_images_label.append(image_class)

    print("{} images were found in the dataset.".format(sum(every_class_num)))
    print("{} images for training.".format(len(train_images_path)))
    print("{} images for validation.".format(len(val_images_path)))
    assert len(train_images_path) > 0, "number of training images must greater than 0."
    assert len(val_images_path) > 0, "number of validation images must greater than 0."

    plot_image = False
    if plot_image:
        # 绘制每种类别个数柱状图
        plt.bar(range(len(flower_class)), every_class_num, align='center')
        # 将横坐标0,1,2,3,4替换为相应的类别名称
        plt.xticks(range(len(flower_class)), flower_class)
        # 在柱状图上添加数值标签
        for i, v in enumerate(every_class_num):
            plt.text(x=i, y=v + 5, s=str(v), ha='center')
        # 设置x坐标
        plt.xlabel('image class')
        # 设置y坐标
        plt.ylabel('number of images')
        # 设置柱状图的标题
        plt.title('flower class distribution')
        plt.show()

    return train_images_path, train_images_label, val_images_path, val_images_label


def plot_data_loader_image(data_loader):
    batch_size = data_loader.batch_size
    plot_num = min(batch_size, 4)

    json_path = './class_indices.json'
    assert os.path.exists(json_path), json_path + " does not exist."
    json_file = open(json_path, 'r')
    class_indices = json.load(json_file)

    for data in data_loader:
        images, labels = data
        for i in range(plot_num):
            # [C, H, W] -> [H, W, C]
            img = images[i].numpy().transpose(1, 2, 0)
            # 反Normalize操作
            img = (img * [0.229, 0.224, 0.225] + [0.485, 0.456, 0.406]) * 255
            label = labels[i].item()
            plt.subplot(1, plot_num, i+1)
            plt.xlabel(class_indices[str(label)])
            plt.xticks([])  # 去掉x轴的刻度
            plt.yticks([])  # 去掉y轴的刻度
            plt.imshow(img.astype('uint8'))
        plt.show()


def write_pickle(list_info: list, file_name: str):
    with open(file_name, 'wb') as f:
        pickle.dump(list_info, f)


def read_pickle(file_name: str) -> list:
    with open(file_name, 'rb') as f:
        info_list = pickle.load(f)
        return info_list


def train_one_epoch(model, optimizer, data_loader, device, epoch):
    model.train()
    loss_function = torch.nn.CrossEntropyLoss()
    accu_loss = torch.zeros(1).to(device)  # 累计损失
    accu_num = torch.zeros(1).to(device)   # 累计预测正确的样本数
    optimizer.zero_grad()

    sample_num = 0
    data_loader = tqdm(data_loader, file=sys.stdout)
    for step, data in enumerate(data_loader):
        images, labels = data
        sample_num += images.shape[0]

        pred = model(images.to(device))
        pred_classes = torch.max(pred, dim=1)[1]
        accu_num += torch.eq(pred_classes, labels.to(device)).sum()

        loss = loss_function(pred, labels.to(device))
        loss.backward()
        accu_loss += loss.detach()

        data_loader.desc = "[train epoch {}] loss: {:.3f}, acc: {:.3f}".format(epoch,
                                                                               accu_loss.item() / (step + 1),
                                                                               accu_num.item() / sample_num)

        if not torch.isfinite(loss):
            print('WARNING: non-finite loss, ending training ', loss)
            sys.exit(1)

        optimizer.step()
        optimizer.zero_grad()

    return accu_loss.item() / (step + 1), accu_num.item() / sample_num


@torch.no_grad()
def evaluate(model, data_loader, device, epoch):
    loss_function = torch.nn.CrossEntropyLoss()

    model.eval()

    accu_num = torch.zeros(1).to(device)   # 累计预测正确的样本数
    accu_loss = torch.zeros(1).to(device)  # 累计损失

    sample_num = 0
    data_loader = tqdm(data_loader, file=sys.stdout)
    for step, data in enumerate(data_loader):
        images, labels = data
        sample_num += images.shape[0]

        pred = model(images.to(device))
        pred_classes = torch.max(pred, dim=1)[1]
        accu_num += torch.eq(pred_classes, labels.to(device)).sum()

        loss = loss_function(pred, labels.to(device))
        accu_loss += loss

        data_loader.desc = "[valid epoch {}] loss: {:.3f}, acc: {:.3f}".format(epoch,
                                                                               accu_loss.item() / (step + 1),
                                                                               accu_num.item() / sample_num)

    return accu_loss.item() / (step + 1), accu_num.item() / sample_num



你可能感兴趣的:(深度学习,python,机器学习,深度学习,网络,python)