之前写过一篇实现猫十二分类的文章,写出了大体的流程,但实际效果并不佳。本文采取微调整个预训练模型的方式,使准确率从0.3提升到了0.93。大体流程参考ResNet猫十二分类,本文只给出不同的地方。
首先数据部分有一些改动
img_datasets = {x: myData(x) for x in ['train', 'val', 'test']}
dataset_sizes = {x: len(img_datasets[x]) for x in ['train', 'val', 'test']}
# dataset准备完毕,开始创建dataloader
train_loader = DataLoader(
dataset=img_datasets['train'],
batch_size=batches,
shuffle=True
)
val_loader = DataLoader(
dataset=img_datasets['val'],
batch_size=1,
shuffle=False
)
test_loader = DataLoader(
dataset=img_datasets['test'],
batch_size=1,
shuffle=False
)
dataloaders = {
'train': train_loader,
'val': val_loader,
'test': test_loader
}
然后是训练部分。训练部分采用每一个epoch中都训练train和val,根据不同epoch中val的准确率的不同不断更新模型的最佳参数,最后训练结束时返回最佳模型参数
# train
# 模型训练的函数 ##################################################
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0 # 最佳正确率,用于判断是否替换best_model_wts
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
for phase in ['train', 'val']: # 每个epoch中都包含训练与验证两个阶段
if phase == 'train':
model.train()
else: # 测试阶段
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled( phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
print('Best val Acc: {:4f}'.format(best_acc))
model.load_state_dict(best_model_wts)
return model
使用pretrain = True的方式得到预训练模型,更改全连接层的输出维度,然后训练残差模型
# 迁移学习
model_ft = models.resnet50(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 12)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
optimizer_ft = torch.optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=5, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,num_epochs=15) # 模型训练
没啥说的
def vali(M ,dataset):
M.eval()
with torch.no_grad():
correct = 0
for (data, target) in val_loader:
data, target = data.to(device), target.to(device)
pred = M(data)
_, id = torch.max(pred, 1)
correct += torch.sum(id == target.data)
print("test accu: %.03f%%" % (100 * correct / len(dataset)))
return (100 * correct / len(dataset)).item()
test_accu = int(vali(model_ft, img_datasets['val']) * 100)
model_name = 'val_{}.pkl'.format(test_accu)
torch.save(model_ft.state_dict(), os.path.join("./myModels", model_name))
# 加载模型
model_ft = models.resnet50(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 12) # 注意更改维度
model_ft = model_ft.to(device) # 注意要放入gpu,保持和参数数据类型一致
model_ft.load_state_dict(torch.load("./myModels/val_9343.pkl"))
vali(model_ft, img_datasets['val'])
输出结果:
test accu: 93.433%