本文转自知乎专栏:https://zhuanlan.zhihu.com/p/32177354
一方面为做资料整理用,方便后期回顾,另一方面转需
--------------------------------------------------
如果你开始了解深度学习的图像处理, 你接触的第一个任务一定是图像识别 :比如把你的爱猫输入到一个普通的CNN网络里, 看看它是喵咪还是狗狗。
一个最普通的CNN, 比如像这样几层的CNN鼻祖Lenet, 如果你有不错的数据集(比如kaggle猫狗大战)都可以给出一个还差强人意的分类结果(80%多准确率), 虽然不是太高。
当然,如果你再加上对特定问题的一些知识, 也可以顺便识别个人脸啥的,开个startup叫face 减减什么:
会玩的, 也可以顺别识别个猪脸什么哒(我觉得长得都一样哦), 这样搞出来每个猪的身份, 对于高质量猪肉的销售, 真是大有裨益的。
或者看看植物都有个什么病害什么的,像这样不同的病斑, 人都懒得看的, 它可以给你看出来。 植物保护的人可以拿着手机下田了。
Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015.
虽然植物保护真的很好用,分类问做就了还真是挺无聊的。
我们进化的方向,也就是用更高级的网络结构取得更好的准确率,比如像下图这样的残差网络(已经可以在猫狗数据集上达到99.5%以上准确率)。分类做好了你会有一种成为深度学习大师,拿着一把斧子眼镜里都是钉子的幻觉。 分类问题之所以简单, 一要归功于大量标记的图像, 二是分类是一个边界非常分明的问题, 即使机器不知道什么是猫什么是狗, 看出点区别还是挺容易的, 如果你给机器几千几万类区分, 机器的能力通过就下降了(再复杂的网络,在imagenet那样分1000个类的问题里,都很难搞到超过80%的准确率)。
He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016.
很快你发现,分类的技能在大部分的现实生活里并没有鸟用。因为现实中的任务啊, 往往是这样的:
或者这样的:
那么多东西在一起,你拿猫狗大头照训练的分类网络一下子就乱了阵脚。 即使是你一个图片里有一个猫还有一个狗,甚至给猫加点噪声,都可以使你的分类网络分寸大乱。
现实中, 哪有那么多图片, 一个图里就是一个猫或者美女的大图,更多的时候, 一张图片里的东西, 那是多多的, 乱乱的,没有什么章法可言的, 你需要自己做一个框, 把你所需要看的目标给框出来, 然后, 看看这些东西是什么 。
于是你来到机器视觉的下一层挑战 - 目标检测(从大图中框出目标物体并识别), 随之而来的是一个新的网络架构, 又被称为R - CNN, 图片检测网络 , 这个网络不仅可以告诉你分类,还可以告诉你目标物体的坐标, 即使图片里有很多目标物体, 也一一给你找出来。
Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.
万军斩你首级那是杠杠的,在众多路人甲中识别嫌疑犯,也是轻而易举, 安防的人听着要按捺不住了。
今年出现的YOLO算法更是实现了快速实时的物体检测,你一路走过就告诉你视线里都有什么在哪里,要知道这在无人驾驶里是何等的利器。
YOLO快速检测法Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
当然, 到这里你依然最终会觉得无聊, 即使网络可以已经很复杂, 不过是一个CNN网络(推荐区域),在加上一层CNN网络做分类和回归。 能不能干点别的?
啊哈, 这就来到了第三个关卡, 你不仅需要把图片中边边角角的物体给检测出来, 你还要做这么一个猛料的工作, 就是把它从图片中扣出来。 要知道, 刚出生的婴儿分不清物体的边界, 比如桌上有苹果这种事, 什么是桌子,什么是苹果,为什么苹果不是占在桌子上的? 所以, 网络能不能把物体从一个图里抠出来, 事关它是否真的像人一样把握了视觉的本质。 这也算是对它的某种“图灵测试” 。 而把这个问题简化,我们无非是在原先图片上生成出一个原图的“mask”, 面具,有点像phtoshop里的蒙版的东西。
所谓抠图
Drozdzal, Michal, et al. "The importance of skip connections in biomedical image segmentation." International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Springer International Publishing, 2016.
注意,这个任务里,我们是要从一个图片里得到另一个图片哦! 生成的面具是另一个图片, 这时候,所谓的U型网络粉墨登场,注意这是我们的第一个生成式的模型。 它的组成单元依然是卷积,但是却加入了maxpooling的反过程升维采样。
这个Segmentation任务, 作用不可小瞧哦, 尤其对于科研口的你, 比如现在私人卫星和无人机普及了,要不要去看看自己小区周围的地貌, 看是不是隐藏了个金库? 清清输入, 卫星图片一栏无余。 哪里有树, 哪里有水,哪里有军事基地,不需要人,全都给你抠出来。
如果你要数个细胞啥的 ,都是挺容易的,给它变成这样的轮廓不就你得了。
我们开始fashion起来, 如果你是淘宝服装小店的老板 ,想让客户输入一张服装的图片,然后得到一组推荐的服装, 来个以图搜图的功能怎么搞呢? 注意啊,我可以从网络上爬一大堆图出来,但是这些数据是没有标注的。怎么办? 铁哥告你还是有的搞,这个搞法,就是聚类。
铁哥教你最简单的一招聚类哦,那就是, 把图片统统放进卷积网络,但是我们不提取分类,而只是提取一些网络中间层的特征, 这些特征有点像每个图片的视觉二维码,然后我们对这些二维码做一个k-means聚类, 也会得到意想不到的效果。 为什么要深度? 因为深度提取的特征,那是与众不同的。
然后以图搜图呢? 不过是找到同一聚类里的其它图片啊。
在聚类的基础上, 就可以做个搜索!
我们开始晋升为仰望星空的人, 之前那些分类赚钱的应用太无聊了。 机器视觉搞科学怎么港? 作为一群仰望星空后观察细胞的人,我们最常发现的是我们得到的天文或者细胞图片的噪声实在太大了, 这简直没法忍啊, 然后, 深度学习给了你一套降噪和恢复图像的方法。 一个叫auto-encoder的工具, 起到了很大的作用 , 刷的一下,图像就清楚了。
这还不是最酷炫的,那个应用了博弈理论的对抗学习, 也可以帮你谋杀噪点! 如果你会对抗所谓GAN, 也是一种图像生成的工具, 让网络去掉噪声的图片,与没有噪声的自然图片, 连卷积网络都判别不出来,对, 就是这样!
Schawinski, Kevin, et al. "Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit." Monthly Notices of the Royal Astronomical Society: Letters 467.1 (2017): L110-L114.
在工业界赚够了钱,科学也太nerd了, 我们来玩艺术思考哲学 ,第一招, 图像风格迁移,请见怎么样用深度学习取悦你的女朋友(有代码):
然而真正能玩好这一事项的,还是那个刚刚提过的对抗学习GAN, 比如大名鼎鼎的CycleGAN, 几乎可以实现一种你自定义的“图像翻译” 功能,而且你不用做标注哦, 拿出冬天和夏天的两组图片, 它会自动的在两组图片中找出对应来。
Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." arXiv preprint arXiv:1703.10593 (2017).
图像翻译也懒的玩了, 你神经网络不是号称能够理解图像,看你来个无中生有,在噪声里生成图片来?
对,依然是GAN,而且是最基础的卷积GAN (DCGAN)就可以给你干出来。
看看GAN所幻想的宾馆情景, 你能想到是计算机做的图吗? 哈哈哈!
Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.
写到这里, 我自己都觉得GAN是非常有前途的,有前途的,有前途的,以前我还以为只是好玩呢。
这里展示的七级浮屠,也不过深度学习被人类discover的冰山一角, 醉卧沙场君莫笑, 古来征战几人回。
给你一个稍微清晰一些的大纲: