matlab聚类实验,实验3Matlab聚类分析

Matlab提供了两种方法进行聚类分析。

一种是利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;

另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。

1.Matlab中相关函数介绍

1.1 pdist函数

调用格式:Y=pdist(X,’metric’)

说明:用‘metric’指定的方法计算X 数据矩阵中对象之间的距离。’

X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。

metric’取值如下:

‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离;

‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离;

‘minkowski’:明可夫斯基距离;‘cosine’:

‘correlation’:‘hamming’:

‘jaccard’:‘chebychev’:Chebychev距离。

1.2 squareform函数

调用格式:Z=squareform(Y,..)

说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。

1.3 linkage函数

调用格式:Z=linkage(Y,’method’)

说明:用‘method’参数指定的算法计算系统聚类树。

你可能感兴趣的:(matlab聚类实验)