- 使用Deepseek书写一篇综述论文,如何提示?
学术乙方
小知识经验分享
使用DeepSeek撰写综述论文时,可以通过以下提示和步骤来高效完成任务:明确研究主题与范围在开始撰写之前,首先需要明确研究主题、文献综述的时间跨度、地理范畴和文献类型。这有助于聚焦研究方向,避免偏离主题。制定详细的提示词提示词的设计是高效利用DeepSeek的关键。可以参考以下模板:研究背景与现状:请帮我梳理XXX领域的研究背景与现状,包括国内外的主要研究成果和研究热点。文献筛选与阅读:请帮我筛
- 代码逐行解析 | 教你在C++中使用深度学习提取特征点
3D视觉工坊
3D视觉从入门到精通c++深度学习开发语言人工智能
点击下方卡片,关注「3D视觉工坊」公众号选择星标,干货第一时间送达扫描下方二维码,加入3D视觉技术星球,星球内汇集了众多3D视觉实战问题,以及各个模块的学习资料:最新顶会论文、书籍、源码、视频(近20门系统课程[星球成员可免费学习])等。想要入门3D视觉、做项目、搞科研,就加入我们吧。作者:泡椒味的口香糖|来源:3DCV添加微信:dddvision
- 2025年毕设ssm校园二手交易平台论文+源码
锦程学长--毕设程序
课程设计
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容选题背景关于校园二手交易平台的研究,现有成果多集中于社会综合型平台(如闲鱼、转转)的商业模式分析,或理论层面的共享经济模型探讨,而针对高校场景特殊性(如用户密度高、交易标的额小、社交属性强)的垂直型平台研究存在明显缺口。当前高校内二手交易多依赖社群、论坛等分散渠道,存在信息不对称、交易
- vue3+springboot电影院售票选座管理系统
qq_3166678367
springboot后端java
目录本系统(已开发完成)->成品实现截图开发技术本系统支持的技术栈源码获取详细视频演示:文章底部获取博主联系方式!!!!本课题重点核心代码部分展示论文提纲来自指导老师帅的肯定视频演示/源码获取本系统(已开发完成)->成品实现截图开发技术关键技术实现:在Java的开发过程中,可以使用HTML、CSS、JavaScript等前端技术来实现系统的用户界面设计和交互功能。后端可以使用Java语言编写业务逻
- DeepSeek + 药物研发:解决药物研发周期长、成本高-降低80%、失败率高-减少40%
Debroon
医疗大模型研发+慢病逆转人工智能深度学习
DeepSeek+药物研发:解决药物研发周期长、成本高-降低80%、失败率高-减少40%论文大纲1.WHY——研究背景与现实问题1.1研究要解决的现实问题与提出背景1.2研究所要解决的问题类别1.3正反例对比关联:和前人的工作有什么关系?3.总结归纳3.1总结收获3.2探索思考4.WHAT——核心发现或论点5.HOW——研究过程、创新与关键数据6.HOWGOOD——理论贡献与实践意义解法拆解1.1
- 医图论文 CVPR‘24 | 适应医学图像中泛化异常检测的视觉-语言模型
小白学视觉
医学图像处理论文解读语言模型人工智能计算机视觉医学图像顶会医学图像处理CVPR论文解读
论文信息题目:AdaptingVisual-LanguageModelsforGeneralizableAnomalyDetectioninMedicalImages适应医学图像中泛化异常检测的视觉-语言模型作者:ChaoqinHuang,AofanJiang,JinghaoFeng,YaZhang,XinchaoWang,YanfengWang源码:https://github.com/Medi
- A Survey of Large Language Models大模型综述论文章节总结
WhyteHighmore
论文语言模型人工智能自然语言处理论文笔记
ASurveyofLLM人大译ASurveyofLargeLanguageModels这篇论文全面回顾了大型语言模型(LLM)的最新进展,重点关注其发展背景、关键发现和主流技术。文章主要围绕LLM的四个主要方面展开:1引言自从1950年图灵测试被提出以来,人类一直在探索机器掌握语言智能的方法。语言本质上是一种受语法规则支配的复杂、精细的人类表达系统,这使得开发能够理解和掌握语言的强大人工智能(AI
- 论文笔记-Contrastive Learning for Unpaired Image-to-Image Translation
kingsleyluoxin
计算机视觉论文笔记深度学习python计算机视觉机器学习人工智能深度学习
论文信息标题:ContrastiveLearningforUnpairedImage-to-ImageTranslation作者:TaesungPark,AlexeiA.Efros,RichardZhang,Jun-YanZhu机构:UniversityofCalifornia,Berkeley;AdobeResearch代码链接https://github.com/taesungp/contra
- 【论文精读】SCINet-基于降采样和交互学习的时序卷积模型
打酱油的葫芦娃
时序预测算法时序预测SCINetTCN
《SCINet:TimeSeriesModelingandForecastingwithSampleConvolutionandInteraction》的作者团队来自香港中文大学,发表在NeurIPS2022会议上。动机该论文的出发点是观察到时间序列数据具有独特的属性:即使在将时间序列下采样成两个子序列后,时间关系(例如数据的趋势和季节性成分)也基本上得以保留。这个观察启发了作者去设计一种新型的神
- 【论文精读】PatchTST-基于分块及通道独立机制的Transformer模型
打酱油的葫芦娃
时序预测算法时序预测PatchTSTTransformer预训练微调表征学习
《ATIMESERIESISWORTH64WORDS:LONG-TERMFORECASTINGWITHTRANSFORMERS》的作者团队来自PrincetonUniversity和IBMResearch,发表在ICLR2023会议上。动机Transformer模型因其自注意力机制在处理序列数据方面的优势,在自然语言处理(NLP)、计算机视觉(CV)、语音等多个领域取得了巨大成功。这种机制使得模型
- 【Hinton论文精读】The Forward-Forward Algorithm: Some Preliminary Investigations-202212
tyhj_sf
论文研读笔记ML理论系列人工智能深度学习FF算法
博文导航0引言1论文摘要2反向传播有什么问题呢?3Forward-Forward算法3.1使用逐层优化函数学习多层表示4Forward-Forward算法的实验4.1反向传播baseline4.2FF算法的一个简单的无监督的例子4.3FF算法的一个简单的监督例子4.4使用FF算法来模拟感知中自上而下的效应4.5作为教师使用空间环境的预测4.6CIFAR-10实验5睡眠6FF算法与其他对比性学习技术
- 【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割
985小水博一枚呀
论文解读深度学习transformer人工智能网络cnn
【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割文章目录【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割2.Re
- 【Image captioning-RS】论文12 Prior Knowledge-Guided Transformer for Remote Sensing Image Captioning
CV视界
Imagecaptioning学习transformer深度学习人工智能
1.摘要遥感图像(RSI)字幕生成旨在为遥感图像生成有意义且语法正确的句子描述。然而,相比于自然图像字幕,RSI字幕生成面临着由于RSI特性而产生的额外挑战。第一个挑战源于这些图像中存在大量物体。随着物体数量的增加,确定描述的主要焦点变得越来越困难。此外,RSI中的物体通常外观相似,进一步复杂化了准确描述的生成。为克服这些挑战,我们提出了一种基于先验知识的transformer(PKG-Trans
- springboot毕设 电脑销售管理系统 程序+论文
真纯Django毕设程序
springboot课程设计后端
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容研究背景随着信息技术的飞速发展和普及,电脑已经成为现代生活和工作中不可或缺的重要工具。电脑销售行业也随之迎来了前所未有的发展机遇,但同时也面临着激烈的市场竞争和不断变化的客户需求。传统的销售管理模式已难以满足当前市场的快速响应和精细化管理要求。因此,开发一套高效、便捷、全面的电脑销售管
- OctoTools:一个具有复杂推理可扩展工具的智体框架
三谷秋水
智能体大模型机器学习人工智能语言模型机器学习
25年2月来自斯坦福大学的论文“OctoTools:AnAgenticFrameworkwithExtensibleToolsforComplexReasoning”。解决复杂的推理任务可能涉及视觉理解、域知识检索、数值计算和多步骤推理。现有方法使用外部工具增强大语言模型(LLM),但仅限于专业领域、有限的工具类型或需要额外的训练数据。本文的OctoTools,是一个无需训练、用户友好且易于扩展的
- 2025年毕设ssm校园二手电瓶车交易网站论文+源码
SSM毕设程序源码JAVA
课程设计
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容选题背景关于校园二手交易平台的现有研究,多以综合类商品交易或书籍循环为主,而专门针对电瓶车这类高价值、强监管的校园二手交易研究较少。当前高校内电瓶车交易存在信息不对称、交易流程不规范、车牌管理脱节等问题,缺乏系统化的解决方案。部分高校虽尝试通过论坛或社群进行交易,但存在用户身份难核实、
- Python实现自动提取目标文档的大纲(13)
写python的鑫哥
Python办公自动化python自动提取Word文档大纲编号
前言本文是该专栏的第13篇,后面会持续分享Python办公自动化干货知识,记得关注。大纲是一种用于组织和呈现内容结构的工具,它通过层次化的形式展示信息的框架和重点。其通常用于规划、整理和总结文档、报告、演讲、论文或其他任何形式的写作和表达。它可以帮助作者或演讲者清晰地梳理思路,确保内容的逻辑性和连贯性,同时也便于读者或听众快速了解整体结构和重点内容。而本文,笔者也重点来讲述通过Python,如何来
- python基于django/flask体育馆管理系统Django-SpringBoot-php-Node.js-flask
QQ_511008285
pythondjangoflaskspringbootphpnode.js
目录技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示技术栈介绍Django-SpringBoot-php-Node.js-flask本课题的研究方法和研究步骤基本合理,难度适中,本选题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能以及钻研能力有益。该学生能够在预定时间内完成该课题的设计。
- 7招教你掌握用DeepSeek辅助论文写作的提示词技巧
学境思源AcademicIdeas
学境思源AI写作ChatGPT人工智能
随着人工智能技术的快速发展,大模型(如DeepSeek、ChatGPT等)已经成为论文写作的重要辅助工具。合理运用提示词(Prompt),不仅能极大提高写作效率,还能辅助生成高质量的学术内容。今天的内容将分享如何利用DeepSeek的提示词技巧,助力论文写作。1.明确写作目标,让AI理解你的需求在使用大模型时,清晰的写作目标至关重要。一个好的提示词应当包括:写作主题、内容范围、格式要求、风格倾向等
- 基于Spring Boot+vue技术的导游系统设计与实现
除了菜一无所有!
springbootvue.js后端
论文下载【免费】基于SpringBoot+vue技术的导游系统设计与实现资源-CSDN文库摘要本研究背景主要聚焦于当前旅游业信息化、智能化的发展趋势。随着移动互联网的普及和人们出行方式的多样化,导游系统作为旅游服务的重要组成部分,亟需进行技术革新以提升用户体验和服务效率。本研究旨在利用SpringBoot后端框架与Vue前端框架,构建一个功能丰富、交互友好的导游系统。研究内容主要包括系统需求分析、
- 毕业论文需要进行几次AIGC检测?
kexiaoya2013
人工智能AIGC论文阅读论文笔记
每到毕业季,许多同学都会面临论文查重的困扰。尤其是今年Deepseek的爆火,学校对论文AIGC检测也越来越严格。那么,毕业论文AIGC检测究竟需要做几次呢?一、检测次数受哪些因素影响1、学校政策部分高校提供1-2次免费检测机会,有的则要求自己检测合格后才能提交。检测前,务必提前了解所在院校的检测规则。若学校未明确,建议至少自查2次(初稿+定稿)。2、AI率波动如果首次AI率检测结果超过或接近学校
- edger多组差异性分析_R语言统计分析微生物组数据
weixin_39961636
edger多组差异性分析
我在学习这本书记了一些笔记,如果你有学习,欢迎分享你的笔记或者教程。我的已有笔记汇总如下:宏基因组学习笔记宏基因组学习笔记2宏基因组笔记(第二章)R语言宏基因组学统计分析学习笔记(第三章-1)R语言宏基因组学统计分析学习笔记(第三章-2)https://link.springer.com/book/10.1007/978-981-13-1534-3下载方法,sci-hub大法啦。出版日期:2018
- EDAS:投稿经验-word版本-问题解决
weixin_41724971
学习总结Latex写作经验总结SCI科研写作方法总结word
1.字体不对,字体未嵌入问题问题:word转PDF后,总是显示有字体格式不对(忘记截图了)。办法:1.EDAS投稿PDF格式问题-CSDN博客-PDF上修改+IEEE论文检测的字体未嵌入问题TimesNewRoman,Bold,TimesNewRoman,Italicisnotembedded解决方法_打开其他人的word显示文字未嵌入-CSDN博客(必须有会员,说实话我没弄出来。如有需要这俩结合
- 如何在论文中添加参考文献引用(以Word2016为例)
韦_恩
windows日常使用总结officeword
相信很多同学在写论文时候的引用是手动自己加的吧?这样不是不行,就是万一某个引用变了就会导致牵一发动全身的问题,所以利用word中提供给你的方式就可以灵活动态添加引用,因为这个东西并不是天天用,所以很容易忘,今天来总结一下。目录1.自定义编号2.添加引用编号3.调整编号与内容之间的空隙4.在文中添加引用5.引用顺序变更后自动调整6.总结1.自定义编号定义新编号格式。在编号格式中加上文献引用的“[]”
- 注意力机制+多尺度卷积
一只小小的土拨鼠
解构前沿:文献精读深度学习python人工智能YOLO深度学习
多尺度卷积先提供丰富的特征信息,注意力机制再从中筛选出关键信息,这样结合起来,不仅可以进一步提高模型的识别精度和效率,显著提升模型性能,还可以增强模型的可解释性。MPARN:multi-scalepathattentionresidualnetworkforfaultdiagnosisofrotatingmachines方法:论文介绍了一种用于旋转机械故障诊断的多尺度卷积神经网络结构,称为多尺度路
- 最新计算机专业毕设论文选题大全基于BeautifulSoup的毕业设计详细题目100套优质毕设项目分享(源码+论文)✅
会写代码的羊
毕设选题课程设计beautifulsoup毕业设计毕业设计题目毕设题目python网络爬虫
文章目录前言最新毕设选题(建议收藏起来)基于BeautifulSoup的毕业设计选题毕设作品推荐前言2025全新毕业设计项目博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、大数据、机器学习等设计与开发。主要内容:免费
- 论文阅读:Deep Stacked Hierarchical Multi-patch Network for Image Deblurring
行走的歌
文献阅读图像处理计算机视觉机器学习深度学习图像去雨图像处理
这是一篇去模糊的文章,后来发现直接套用不合适,无法获取到相应的特征,遂作罢,简单记录一下。2019CVPR:DMPHN这篇文章是2019CVPR的一篇去模糊方向的文章,师兄分享的时候看了一下,后来也发现这个网络结构在很多workshop以及文章中都见过。文章:ArXiv代码:Github在去模糊领域,目前的多尺度和尺度循环模型存在一些问题:1)由粗到细方案中的去卷积/上采样操作导致运行时间昂贵;2
- 论文笔记:Deep Algorithm Unrolling for Blind Image Deblurring
爱学习的小菜鸡
论文笔记去模糊图像处理神经网络
这是一篇CVPR2020的去模糊论文,主要是通过传统与深度相结合,将迭代次数变成神经网络的层数,使网络结构的网络结构更加具有解释性。主要贡献:DeepUnrollingforBlindImageDeblurring(DUBLID):提出一种可解释的神经网络结构叫做DUBLID,首先提出一种迭代算法,该算法被认为是梯度域中传统的广义全变分正则方法(generalizedTV-regularizeda
- 《论分布式系统架构设计及其应用》架构师论文
文琪小站
系统架构师系统架构设计师软考论文
【摘要】2022年3月,我参与了某金融科技公司“智能风控云平台”项目的研发工作,担任系统架构师职务,负责分布式系统架构设计与核心技术选型。该平台旨在为银行、保险等金融机构提供实时风险评估、反欺诈及数据服务,需支撑每秒十万级并发请求并满足毫秒级响应要求。项目采用微服务架构风格,融合事件驱动、服务网格及分布式数据存储技术,解决了高可用性、弹性扩展及数据一致性等核心问题。本文通过实际案例论证分布式架构设
- prompt 工程整理(未完、持续更新)
clvsit
LLMprompt人工智能LLM
工作期间会将阅读的论文、一些个人的理解整理到个人的文档中,久而久之就积累了不少“个人”能够看懂的脉络和提纲,于是近几日准备将这部分略显杂乱的内容重新进行梳理。论文部分以我个人的理解对其做了一些分类,并附上一些简短的理解,若读者对其感兴趣,可通过论文名称进行搜索。后续有时间,会持续更新和补充。提示工程(PromptEngineering)关注提示词开发和优化,帮助用户将大语言模型(LargeLang
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比