CVPR2022去噪+超分

这里写自定义目录标题

  • CVPR2022去噪+超分
    • 去噪
    • 图像复原/去噪/增强

CVPR2022去噪+超分

去噪

  1. Deep Constrained Least Squares for Blind Image Super-Resolution(用于盲图像超分辨率的深度约束最小二乘) ,论文地址:https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2202.07508
  2. Local Texture Estimator for Implicit Representation Function(隐式表示函数的局部纹理估计器) ,https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2111.08918;
  3. Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution(一种真实图像超分辨率的局部判别学习方法)
  4. https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2203.09195
  5. Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel(对噪声和核进行精细退化建模的盲图像超分辨率)
  6. https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2107.00986 ;

图像复原/去噪/增强

  1. High-Fidelity GAN Inversion for Image Attribute Editing(用于图像属性编辑的高保真 GAN 反演) ,论文地址:https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2109.06590
  2. Restormer: Efficient Transformer for High-Resolution Image Restoration(用于高分辨率图像复原的高效transformer) ,https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2111.09881;
  3. IDR: Self-Supervised Image Denoising via Iterative Data Refinement(通过迭代数据细化的自监督图像去噪) ,https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2111.14358

你可能感兴趣的:(pytorch,深度学习)