from model import *
import torchvision
#准备数据集
from torch import nn
from torch.utils.data import DataLoader
train_data=torchvision.datasets.CIFAR10(root="./data",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data=torchvision.datasets.CIFAR10(root="./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据的长度为:{}".format(test_data_size))
#利用dataloader加载数据集
train_loader=DataLoader(train_data,batch_size=64)
test_loader=DataLoader(test_data,batch_size=64)
#创建网络模型
mob=Mob()
#损失函数
loss_function=nn.CrossEntropyLoss()
#优化器
learning_rate=0.01
optimizer=torch.optim.SGD(mob.parameters(),lr=learning_rate)
#设置训练网络的一些参数
#记录训练次数
total_train_step=0
#记录测试的次数
total_test_step=0
#训练的轮数
epoch=10
for i in range(epoch):
print("-------------第{}轮训练开始".format(i+1))
#训练步骤开始
for data in train_loader:
imgs,targets=data
outputs=mob(imgs)
loss=loss_function(outputs,targets)
#优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step=total_train_step+1
print("训练次数:{},loss:{}".format(total_train_step,loss.item()))
from torch.utils.tensorboard import SummaryWriter
from model import *
import torchvision
#准备数据集
from torch import nn
from torch.utils.data import DataLoader
train_data=torchvision.datasets.CIFAR10(root="./data",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data=torchvision.datasets.CIFAR10(root="./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据的长度为:{}".format(test_data_size))
#利用dataloader加载数据集
train_loader=DataLoader(train_data,batch_size=64)
test_loader=DataLoader(test_data,batch_size=64)
#创建网络模型
mob=Mob()
#损失函数
loss_function=nn.CrossEntropyLoss()
#优化器
learning_rate=0.01
optimizer=torch.optim.SGD(mob.parameters(),lr=learning_rate)
#设置训练网络的一些参数
#记录训练次数
total_train_step=0
#记录测试的次数
total_test_step=0
#训练的轮数
epoch=10
#添加tensorboard
writer=SummaryWriter("./logs_train")
for i in range(epoch):
print("-------------第{}轮训练开始".format(i+1))
#训练步骤开始
for data in train_loader:
imgs,targets=data
outputs=mob(imgs)
loss=loss_function(outputs,targets)
#优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step=total_train_step+1
if total_train_step % 100 == 0: #每100次打印一次
print("训练次数:{},loss:{}".format(total_train_step,loss.item()))
writer.add_scalar("train_loss",loss.item(),total_train_step)
#测试步骤开始
total_test_loss=0
with torch.no_grad(): #没有梯度 ---不会调优
for data in test_loader:
imgs,targets=data
outputs=mob(imgs)
loss=loss_function(outputs,targets)
total_test_loss=total_test_loss+loss
print("整体测试集上的loss:{}".format(total_test_loss))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
total_test_step=total_test_step+1
torch.save(mob,"mob_{}.pth".format(i))
print("模型已保存")
writer.close()
from torch.utils.tensorboard import SummaryWriter
from model import *
import torchvision
#准备数据集
from torch import nn
from torch.utils.data import DataLoader
train_data=torchvision.datasets.CIFAR10(root="./data",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data=torchvision.datasets.CIFAR10(root="./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据的长度为:{}".format(test_data_size))
#利用dataloader加载数据集
train_loader=DataLoader(train_data,batch_size=64)
test_loader=DataLoader(test_data,batch_size=64)
#创建网络模型
mob=Mob()
#损失函数
loss_function=nn.CrossEntropyLoss()
#优化器
learning_rate=0.01
optimizer=torch.optim.SGD(mob.parameters(),lr=learning_rate)
#设置训练网络的一些参数
#记录训练次数
total_train_step=0
#记录测试的次数
total_test_step=0
#训练的轮数
epoch=10
#添加tensorboard
writer=SummaryWriter("./logs_train")
for i in range(epoch):
print("-------------第{}轮训练开始".format(i+1))
#训练步骤开始
for data in train_loader:
imgs,targets=data
outputs=mob(imgs)
loss=loss_function(outputs,targets)
#优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step=total_train_step+1
if total_train_step % 100 == 0: #每100次打印一次
print("训练次数:{},loss:{}".format(total_train_step,loss.item()))
writer.add_scalar("train_loss",loss.item(),total_train_step)
#测试步骤开始
total_test_loss=0
total_accuracy=0
with torch.no_grad(): #没有梯度 ---不会调优
for data in test_loader:
imgs,targets=data
outputs=mob(imgs)
loss=loss_function(outputs,targets)
total_test_loss=total_test_loss+loss
accuracy=(outputs.argmax(1)==targets).sum() #argmax(1) 横向
total_accuracy=total_accuracy+accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuarcy",total_accuracy/test_data_size,total_test_step)
total_test_step=total_test_step+1
torch.save(mob,"mob_{}.pth".format(i))
print("模型已保存")
writer.close()
model.py
# 搭建神经网络
import torch
from torch import nn
class Mob(nn.Module):
def __init__(self):
super(Mob, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 4 * 4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
if __name__=="__main__":
mob=Mob()
input=torch.ones((64,3,32,32))
output=mob(input)
print(output.shape)